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Abstract

Augmented reality allows for an almost seamless fusion of the real and virtual world. The
myriad of possibilities this provides, for both classic board games, and modern computer
games, is inspiring. By using augmented reality, the user can interface with the game by
physically interacting with real objects. Providing the player with this kind of tactile interface
essentially integrates the ”controller”, as a part of the game.

In this thesis I implement and evaluate a system for the real-time tracking of fiducial
tags, along with homography based pose estimation. The thesis provides an introduction to
projective geometry theory, and uses it as a basis to describe the calculations and techniques
necessary, for the real-time tracking and pose estimation of multiple tags. The systems ro-
bustness is tested, and the pose estimation algorithm is compared to an open source computer
vision library. An informal comparison is also conducted with a commercial game which uses
augmented reality. The advantages and disadvantages of augmented reality are considered
when using it to enhance both classic board games and modern computer games. To further
study the challenges and possibilities of using augmented reality in games, four game concepts
are considered, and one is implemented as a rough prototype. The prototype is tested with
ten willing participants to reveal problems and interaction issues, by using the ”think aloud”
protocol.

The thesis highlights one approach to pose estimation, which is successfully integrated into
a working game prototype. The subsequent user tests shed light on how the interaction with
the system is perceived by the user, and what potential problems exist when using augmented
reality to create a tactile interface for games.
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1 Introduction

Computer games and board games exist in different worlds. One world is digital and the other
analogue. Both of these mediums have their individual strengths and weaknesses. Computer
games are capable of presenting the player with an almost life-like reality, which can immerse
her deep into a fantasy world, where anything can happen. Board games, not capable of
presenting such an immersing world, are often limited to using symbols and static elements,
leaving it up to the players imagination, to shape and animate it. However, no matter the
medium in which the game exists, the goal is the same. To provide each player with an
enjoyable experience.

I believe that both board games and computer games stand to gain from each others
unique features, and provide an overall improved experience. A board game stands to gain
from the computers accountability, computational power and feedback devices (screens and
speakers). A computer game could benefit from a board games more direct interaction with
tangible game elements, and overall social experience. The most vague of the aforementioned
benefits is the social experience, which warrants further clarification. As computer games
have evolved, they have also grown more sociable. Today, computer games exist that allow
for more people to play together, than previously thought possible. But the experience of a
multiplayer computer game, and a multiplayer board game, is not the same. A board game
puts players close together and often right in front of each other. Interactions are performed
in between players and each participant is within view of the others. On the other hand,
interactions in computer games are performed through the computer, and players are rarely
within view of each other. These two types of games provide an all together different social
experience. By selecting positive aspects of both types, I believe the users experience can be
improved.

Augmented Reality is a field of research concerned with the combination of real-world and
computer-generated data. Using it, along with other computer vision techniques, I intend to
combine elements from both classic board games and modern computer games. To properly
combine both real and virtual elements, I will implement a system capable of tracking fiducial
tags, and individually estimating their poses, in real-time. The system is to be implemented
in a prototype game to gain insight as to how well the interaction possibilities, provided by
augmented reality, work. The robustness of the developed tracking and pose estimation will
be tested, and the developed prototype game will be played by a number of volunteer players.
Results from both tests will be discussed and evaluated. In addition to testing the software
implemented during the course of the thesis, an informal test and comparison is made with
an existing commercial product, which uses augmented reality.

I hope that this combination of classic and modern game elements, forming a kind of hybrid
game, will provide the player with a unique experience and enjoyable experience. Through
the development of the thesis, I also hope to gain valuable insight into the implementation
and use of augmented reality, and how this can shape human computer interaction. As for
whether or not augmented reality will have a significant impact on the gaming industry is
hard to predict, but I believe that we are only now seeing the tip of the iceberg.

1.1 Thesis Aim

The main focus of this thesis is to present and implement a system capable of tracking
fiducial markers, and estimating their individual poses in real time. The intended use for
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the developed system is an augmented reality game. Therefore, it has also been a goal to
consider what possibilities the use of such a system has to offer in a gaming context. To
properly test the developed system, and further study the possibilities, a prototype game has
been developed which makes use of augmented reality.

A list describing the individual specific goals is provided below:

• Research and implement computer vision techniques relevant for this thesis.

• Identify and describe the computer vision techniques used in the project.

• Design and construct a system to track and interpret board game elements in real-time.

• Evaluate the robustness of the developed hybrid game system.

• Consider possible enhancements to the implemented techniques based on the robustness
of the developed system.

• Evaluate and analyze the users experience and interaction with the hybrid game.

1.2 Implementation and Design Limitations

This section details implementation and design limitations in this thesis:

• Prototype Game - The game developed in the master thesis serves as a proof of
concept and is intended as a means to test interaction and computer vision techniques.
It is not intended to become a fully developed commercial title, but rather a working
prototype.

• Closed Environment - The prototype will only function within specific predetermined
parameters.

• Hardware Specific - The prototype is only guaranteed to execute on the hardware it
was developed. Especially in regards to the cameras it can use, as each have their own
set of internal parameters.

• Computer Vision Robustness - Computer vision is an enormous field of research and
it is beyond the scope of this master thesis to handle each conceivable issue, when dealing
with a camera. Areas of complications include camera calibration, image distortion
and/or lack of proper lighting. Although these issues cannot be ignored, they are of low
priority, in comparison to the the main focus of this thesis.

• Computer Vision Aids - Providing the computer with additional visual aids (apart
from the board game it is tracking, ) would likely improve tracking stability and per-
haps even simplify the algorithms computing the pose of the different game elements.
However, additional aids would put further constraints upon what the computer must
have in its field of view, and in a worst case scenario hinder player interaction with the
game. Consequently, the proposed system will by design not make use of any additional
visual cues, apart from the markers visible within the playing area. A benefit of this
approach, is that the hybrid game would not require any additional components apart
from the game itself, its pieces, a PC, and a camera.
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• Computer Vision Complexity - The implemented system will only make use of a
single camera and display all visualizations on a standard PC screen. The camera is
not necessarily static, but its purpose is to view the entire game area at all times.
Mounting the camera on the user and providing the user with a head mounted display
is an ideal expansion, but beyond the scope of the thesis. It is considered as future work
in Section 11.4.

• Pose Estimation Algorithm - It is beyond the scope of this thesis to analyze and com-
pare several existing pose estimation algorithms. A single pose estimation algorithm,
based on homographies and the extraction of the cameras location and orientation from
it, has been researched and implemented in this thesis. A description of the algorithm
and why it was chosen as opposed to other algorithms is described in Section 6.

1.3 Thesis Disposition

Apart from the two immediate sections following this introduction, the thesis is composed of
three large segments. The first segment (Sections 4 through 8) contains as few implementa-
tion details as possible as to allow the described system to be implemented on any platform
providing similar capabilities. The second segment (Sections 9 and 10) explains implemen-
tation specific details along with any theory related specifically to the implementation. The
third and final segment discusses results obtained from the testing procedure and sums up
the accomplishments of this thesis in a final conclusion (Sections 11 and 12).

Although the thesis contains a number of sections which hopefully everyone should be
able to understand, the intended audience is a student, with at least a bachelor in computer
science, and a general understanding of computer vision. The thesis is intended to be read
sequentially. It is possible to read only select chapters or skip complete sections altogether,
but references back to previously explained theory only appear to clarify and avoid ambiguity.
With that in mind, here is a brief explanation of sections and their contents:

Section 2 defines common terms and the mathematical notation used throughout the
thesis. Section 3 details a number of projects related to this thesis. Section 4 more thoroughly
introduces the notion of augmented reality in relation to this project, and how it can be used to
improve the gaming experience. Section 5 provides the reader with the basic theory regarding
projective geometry, and Section 6 explains how the pose estimation algorithm works based
on the previous theory. In Section 7 a number of possible game ideas are explored which
make use of augmented reality. The actual concept chosen and implemented as a prototype is
also explained including its rules, user-, and computer controlled elements. Section 8 provides
the remaining details needed in order to properly combine the real and virtual reality. The
most significant implementation related details are explained in Section 9. An overview of
the implementation is provided in Section 10 with a UML diagram and a brief description
of all the classes in the developed code. Finally, Section 11 describes the testing procedure
used to evaluate the prototype developed during the thesis. The chapter also discusses the
results and details ideal improvements to the developed prototype. Section 12 ends the thesis
by summing up the most notable accomplishments.
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2 Definition of terms

For the convenience of both myself and the reader, I have chosen to include this section in
the thesis. If the reader is well versed within the topic specific notation, this section can be
skipped.

In general the terms and mathematical notations in papers and books regarding projective
geometry and related topics conform to the same standard. There are however instances where
some authors have decided to exchange one commonly used letter describing a matrix, for
another. In most cases I have chosen to stick with the notation I have found in other texts.
Only where I have discovered ambiguity or believed to improve the notation, have I deviated
from set standards.

The list below comprise the defined terms for this thesis, and the following subsection
elaborates on the mathematical notation used.

• Computer Game - Often also referred to as a video game, referring to the raster
display device often used in classic digital games. I use the term computer game which
is intended to include games running either a computer or on a console (such as an
X-Box, Super Nintendo Entertainment System, Neo-Geo, etc.).

• Augmented Reality (AR) - A concept involving the combination of real-world and
computer-generated data. The real-world data (often an image of the real-world) is
augmented by adding (or even subtracting) data to (or from) it. A common usage is
that of a heads-up display (HUD) being overlayed on a surface, close to a person. The
HUD could relay such information as position and heading, or additional data regarding
elements shown in the image.

• Virtual Reality (VR) - A computer-simulated environment that allows for user inter-
action. The environment often only provides a visual and audial feedback, which can be
accomplished by having the user look into screens, and listening to speakers. Modern
VR systems also allow for the user to experience tactile sensations.

• Pose Estimation - Determining the pose of an object in one (or several) images,
relative to some coordinate system.

• Radio Frequency IDentification (RFID) - An identification method making use
of devices such as RFID-tags and transponders. RFID-tags exist both as active and
passive variants. The active version contains its own power supply, where as the passive
version relies on a transponder signal, in order to function and relay its identification.

• Tangible User Interface (TUI) - A user interface, in which a user interacts with
digital information through a physical environment.

• Heads Up Display (HUD) - Any transparent display which presents data, and can
be monitored concurrently with a primary task. An example is the information shown
to pilots in military grade airplanes.

• Head-Mounted Display (HMD) - A head (or helmet) mounted display device.
Placed on the users head, the device has a field capable of visualizing graphics in front
of one (monocular HMD) or both eyes (binocular HMD).
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• Tag - A surface with an easily recognizable pattern upon it. It is sometimes also referred
to as a fiducial marker. A good example of a recognizable pattern is the surface of a
domino brick, which has white dots on it.

• Ideal Points - Points considered to lie at infinity in projective geometry. Often ex-
pressed in homogeneous coordinates (see Section 2.1).

• Homography - A homography is a one-to-one relation between two sets of points. The
relation can be expressed as a matrix, and can be used to the define the relation between
points, in two images.

• Degrees of Freedom (DOF) - The number of independent variables required to
specify the state of an element. For example, a point in a two dimensional space (R2)
has two degrees of freedom (x and y), which must be specified, before its exact state
(position), is determined.

2.1 Mathematical Notation

The following notes should be observed regarding the mathematical notation in this thesis:

• Vector/point orientation - All vectors are assumed to be in the upright vertical
notation unless explicitly written horizontally. For example, the vector v is therefore
equal to (x, y, z)T and vT = (x, y, z).

• Euclidean and homogeneous notation - The letter E, affixed as subscript to a
point, will define it to be expressed in Euclidean coordinates. Thus, a point p expressed
in Euclidean coordinates will be written as pE. If not specified, the point is assumed to
be expressed in homogeneous coordinates. To avoid superfluous notation, only points
and vectors adhere to this notation. Matrices and other mathematical operations are
assumed to function in the same coordinate system, as the points and vectors they
affect, unless otherwise specified.
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3 Previous/Related Work

As previously stated, the aim of this thesis is, in part, to develop a system, which can combine
elements from both the real and a virtual world. It is also my intention to perform preliminary
research and analyze the users interaction with a game, which uses this technology. I have
chosen to divide the work I have researched for this thesis into two groups. First, projects
and papers with a focus on technique and research regarding pose estimation and augmented
reality. Second, projects and papers concerning games and/or gaming which uses augmented
reality or similar technology.

There are undoubtedly more projects related to this thesis than the ones listed in these
two sections, but the ones listed here are those that I found to be most relevant.

3.1 Computer Vision and Augmented Reality

The projects and papers listed in this section form the basis of my research involved in this
thesis. They are listed in the order, in which I discovered them. The list is not exhaustive,
but is limited to the projects which I studied most and/or are most related to this master
thesis.

A number of these projects served as initial inspiration for attempts at creating a working
pose estimation algorithm. However, none of the projects or papers below provided a de-
scription of the process from start to finish, which I understood. Therefore, it has become a
personal goal of mine, to describe the pose estimation process, in as much detail as possible,
in this thesis. Although the projects below did not result in a directly applicable algorithm,
they have been a great help in the form of inspiration, especially in regard to the shape and
look of the tag.

• Matrix: A Realtime Object Identification and Registration Method for Aug-
mented Reality [Rek98] by Jun Rekimoto - This paper introduces a technique for
producing augmented reality systems that simultaneously identify real world objects
(via tags) and estimate their coordinate systems. The method presented in the paper
utilizes a 2D matrix marker (tag), and a square shaped barcode, which is uniquely iden-
tifiable and aids the system in estimating the coordinate system. The method presented
in the paper is the precursory technology to Cybercode [RA00] developed by Jun Reki-
moto and Yuji Ayatsuka. Cybercode has been used in recent commercial title named
”The Eye of Judgment” [Wikd] for the PlayStation 3. This article and the related com-
mercial product was the initial inspiration for this master thesis. Initial versions of the
tag used in this thesis is based upon the tags shown in this paper.

• ARToolKit [Kat] by Hirokazu Kato et al. - The ARToolKit is a software library for
building Augmented Reality applications. It provides the developer with practically ev-
erything necessary to integrate augmented reality into an OpenGL Application. A now
discontinued project exists which has successfully integrated the library with Ogre3D
(the graphics engine used in this thesis). The ARToolKit uses an iterative closest point
(ICP) algorithm in which a type of brute force approach is applied, varying parameters
and evaluating whether an improved result was achieved or not. It is written in the
C programming language and made available freely for non-commercial use under the
GNU General Public License. Because the ARToolKit is an open-source project, I spent
a while investigating the code performing the actual pose estimation. Unfortunately, at
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the time of writing, it is virtually without comments, and the provided documentation
is almost completely lacking, in regards to the details behind the actual pose estimation.
Additionally, the code is written in a very minimalistic style (many variables are de-
noted by a single letter) which makes it even more difficult to understand. As a result,
this project has had little effect upon the master thesis although it has been researched
extensively.

• Studierstube Tracker [WAM+] by Daniel Wagner et al. - Studierstube Tracker
is a computer vision library for detection and pose estimation of 2D fiducial markers. It
is the successor to a project known as ARToolKitPlus based partially on the ARToolKit
and some aspects of ARTag. The Studierstube Tracker uses a non-linear pose estimation
algorithm (with Gauss-Newton iteration) and is closed source. Although neither the
studierstube tracker nor the ARToolKitPlus has had a large impact on this thesis, apart
from further tag design inspiration, the project is mentioned due to the contact I have
maintained with Daniel Wagner during the development of the thesis. He graciously
provided help and insight into a number of issues plaguing my pose estimation algorithm.

• Planes, Homographies and Augmented Reality [Lil03] by Björn Liljequist -
Björn Liljequist’s master thesis presents a system for estimating camera movements in
image sequences where the scene is known to contain significant planar structures. Apart
from initial manual interaction, the system is fully automated and can compensate for
variable camera focal length as well as new planes becoming dominant in the scene. This
master thesis is similar to my own, in that it also uses a homography based approach to
pose estimation. However, there are a number of crucial differences between this, and
my own thesis. Some of the differences include: Liljequists project is not dependent on
real-time execution, there is no running user interaction, the tracking is not done via
tags, and there is only one set of points for which a pose is estimated. Although an
explicitly mentioned goal of the thesis was to

[...] achieve and convey a complete understanding of the process.

, there were a few intricate details that I did not discover in the thesis. Possibly due to
some of the fundamental differences between the uses of the pose estimation. Regardless,
the project has been a useful aid in understanding a large portion of the theory relating
to projective geometry and its uses.

• ARTag [Fia, Fia04a, Fia04b] by Mark Fiala - Similar to the ARToolKit, ARTag
is also a software library designed to be used in new or existing applications adding
augmented reality functionality. ARTag is closed source and at the time of writing, de-
velopment is currently halted due to licensing issues with the National Research Council
of Canada. This project served as yet another source of inspiration regarding the tag
design, as it conveniently provides a comparison of most tag designs in use. The tag
detection used in this project is more robust that then one utilized in the ARToolKit
[Kat] according to the paper. It is an edge based approach as opposed to pattern recog-
nition, and does not rely on gray scale thresholding. Use of this algorithm is considered
as a future improvement in Section 11.4.
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3.2 Augmented reality Gaming

According to Bimber and Raskar, Augmented reality was ”born” in 1968 [BR05] when Suther-
land introduced the worlds first head mounted three dimensional display [Sut68]. Although
augmented reality has been applied within a number of industries, gaming has not been one
of them until recently. In order to gain inspiration and a better understanding of the possi-
bilities I have researched some of the earliest and latest developments regarding augmented
reality in games. The list is sorted according to the date of appearance.

• 1000CS Game System [Kni] by Virtuality - The first wide spread virtual real-
ity game system introduced in the nineties by a company called ”W Industries” (later
renamed to ”Virtuality”). The game system was mainly targeted for amusement loca-
tions, and not as a commercial home product for the end user. It is mentioned here
because of its historical significance in relation to augmented reality. In contrast to
augmented reality, virtual reality aims to substitute the whole of reality with a virtual
one. The visual and audial senses of the user receives stimulus almost exclusively from
a simulated environment, giving the illusion of another world. Both virtual and aug-
mented reality share similar roots in technology, and I have been unable to discover an
augmented reality related game product prior to the 1000CS game system. It is also
the first virtual reality game which I had the opportunity to enjoy.

• Virtual Boy by Nintendo - The only commercial virtual reality gaming system
launched by a high-profile company intended for home-use. The console received lacklus-
ter reviews and quickly faded from the interest of the gaming industry without gaining
any wide spread acceptance [Ken01]. Just like the 1000CS game system, it is only his-
torically related to augmented reality and mentioned because I was unable to find a
commercially released augmented reality console. At the time of writing I have only
been able to find a now discontinued commercial product [Ltd].

• Collaborative gaming in augmented reality [SEG98] by Szalavári et al. -
Szalavári et al. introduce a local collaborative augmented reality environment for home
based entertainment. The system uses HMDs to visualize a Chinese board game (mah-
jongg [Wikf]) playable by up to a total of four players. In contrast to the prototype
developed in this thesis, players interact with the virtual game via ”Personal Interaction
Panels” [Sza99] which resembles a notebook-sized hand held panel and a pen. The
project is an excellent example of how a board game can be ported to a digital medium,
with almost no modification to the original game concept.

• ARQuake: an outdoor/indoor augmented reality first person application
[CDS+00] by Ben Close et al. - One of the first games utilizing augmented reality
as a core concept connecting the player with the physical world she is in. Based on Quake
[Wikl], a first person shooter for the PC platform, the developed application expanded
on the game by adding augmented reality. The real and virtual world are synchronized
giving the illusion that both the player and her opponents exist in the same world.
The project uses multiple technologies to allow for outdoor/indoor augmented reality,
among others a modified version of the ARToolKit [Kat].

• Human Pacman: A Mobile Entertainment System with Ubiquitous Com-
puting and Tangible Interaction over a Wide Outdoor Area [CWG+03] by
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Cheok et al. - A game where the player moves actively around in both the real and
virtual world. Based on Pac-Man [Wiki], the game allows for multiple players to partic-
ipate. One player assumes the part of pac-man and must eat all the dots in the ”level”.
The other players assume the roles of the ghosts and must catch pac-man.

• Heuristics for Tabletop Games [Köf07] by Christina A. Köffel - This diploma
project presents a comprehensive set of heuristics for the evaluation of tabletop games.
According to the author, the heuristics

[...] contain all facets offered by tabletop games, such as game play and
game story, virtual interface and the special conditions of augmented tabletop
games.

The heuristics described in this project have been taken into consideration during the
development of the prototype game in this thesis.

• Eye of Judgment [Wikd] by Sony - A commercial game by Sony released in 2007
utilizing augmented reality as part of the gameplay. It has received mixed reviews [Met]
and sold approximately 200,000 copies not including sales in Europe [vgc]. Although
Sony has a number of titles available for its consoles utilizing the camera, I have chosen
only to include this title in the list as it is their only title using augmented reality to
an advanced degree. This product was a part of what originally inspired me to select
augmented reality as a topic for my master thesis. An informal comparison between the
developed prototype and the Eye of Judgment is conducted in Section 11.3.

• Levelhead [Oli] by Julian Oliver - A spatial memory game created by Julian Oliver.
Among other libraries the game utilizes the ARToolKit [Kat] for pose estimation. The
object of the game is to lead the main character out of a series of rooms represented by
cubes in the real world.

One of the few existing augmented reality games which, in my opinion, makes good use
of the technology to provide a unique experience to the player. The game has served as
additional inspiration for this thesis.
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4 Augmented Reality and hybrid gaming

This section provides a brief introduction to augmented reality and why combining classic
board games and computer games along with augmented reality is an ideal concept.

The different projects mentioned in the previous section makes it apparent that augmented
reality is not a new phenomenon. Neither is virtual reality, with which it shares a number
of technological elements. At the time of writing, previously launched pure virtual reality
products seem to have all but disappeared from the industry. The lack of continuing success,
of the CS1000 [Kni], is undoubtedly tied to the struggling arcade industry [Ken01]. But even
the commercial home product Virtual Boy has not had a successor or comparable product
since its initial release.

Due to a number of reasons, I believe augmented reality has a greater chance of success
of becoming an integral part of the gaming industry. The average consumer has far more
computational power at her disposal when compared to the early nineties, making a product
for home use within the realms of possibility. Augmented reality aims to enhance and not
substitute the existing reality which allows an application to take advantage of a users pre-
existing knowledge regarding that reality. Players, being indigenous to the real world, have
certain preexisting concepts regarding it. This could be utilized by the application to allow
for a smoother and transition free understanding of various game elements. Finally, because
augmented reality is based on the actual world, components from the real world can be used
as a basis for interaction. This concept is described in further detail in the itemized list below.
The list contains, what I believe to be, some of the most significant advantages of combining
board games and computer games, and using augmented reality in the process. Because the
advantages relate differently to either type of game (board or computer based), I intend to
clarify how it relates to each of them individually.

• Haptic Feedback - As mentioned above, objects in the real world can be used as a
basis for interacting the game. As long as the object can be recognized by the computer,
it can be merged with the virtual world. Because the object still exists in the real world,
the player is free to touch and affect it. The user can be given a tangible user interface
where an effect in the virtual world may have its cause in the real one. I believe that
this removes a barrier otherwise created by controllers or other interfaces, where the
device being manipulated rarely resembles what it affects in the game. An example of
this, is the standard game controller used when playing racing games. The controller
looks nothing like the steering wheel normally used to control the car. However, a
number of controllers and technologies exist, apart from augmented reality, that reduce
this barrier between the real world and the game world. The most common one is the
rumble feature found in most gamepads. It affects the player via vibrations, usually
intended to signal specific events. Another less common example, are controllers that
more or less accurately resemble the object manipulated in the game. For example,
the plastic guitar used in Guitar Hero or steering wheel controllers used for racing
games. The most advanced example is perhaps a force feedback steering wheel which,
in addition to resembling an actual steering wheel, provides the player with realistic
haptic feedback. Via the controller the player is able to both determine how much
traction the in-game car as well as what type of surface it is driving on. However, even
though these controllers may resemble or feel like their ”actual” counterparts, I believe
the user is well aware that they are not one and the same. Using augmented reality can
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make an object the user physically manipulates an integral part of the game.

A good example of haptic feedback, using augmented reality, is the game Levelhead [Oli].
Players manipulate a character in a room by turning and rotating a solid cube they hold
in their hand. The cube appears to contain a room within which the character resides.
If the player tips the cube in one direction, the room will also tip, and the character
will move in that same direction.

From the perspective of a computer game, augmented reality allows for an object to
become an actual part of the game, thereby providing haptic feedback. From a board
game perspective augmented reality will allow for an object to move from symbolizing
an element, closer to being that element.

• Accountability - Briefly mentioned in Section 1, the computer helps provide account-
ability for actions taken within the game world. In general board games tend not to
include elements that can be easily disputed among players, as there is rarely an objec-
tive third party involved. A computer could be utilized either as the final judge in case
of disputes, or just as kind of consultant providing its ”opinion” on the situation. Using
the computer for the purposes of accountability is not limited to areas of dispute. The
computer can assume the burden of tracking tedious game elements, such as score or
other statistics. In a similar fashion, the computer can also be used to prohibit cheating.
This advantage is only relevant in relation to board games since accountability is the
very foundation for most computer games.

• Hidden Information - Just as the computer can take care of tracking tedious game
elements, it can also handle information intended to be kept hidden from one or multiple
players. Board games and computer games each have their individual strengths and
weaknesses regarding how to handle hidden information. In the case of board games,
hidden information is usually limited to simple actions, or information in the form of
cards not visible to the player(s). After all, the players must know the rules in order to
play the board game, so any actions the board game requires to be performed, must be
undertaken by its players. A computer could assist in controlling elements of the game,
which the player should not have intimate knowledge of, there by hiding information
crucial to the games progression.

In computer games, the player is usually presented with information on a useful-to-
know basis. It is common to hide a large amount of information from the player, since
it either has little relevance for her, or ruins the gaming experience if revealed. There
are however occasions where information should be readily available for one player,
but not for another. This is often the case in multiplayer games where players are up
against each other. If the game being played uses multiple display devices, the solution
is straightforward. Only reveal relevant information on the screen, used by the intended
recipient. Unless the game is being played over a network, games usually only make
use of a single screen. In this case, how to display this private information is not as
straightforward. In case of a single screen, most modern computer games avoid this type
of partially hidden information altogether. Some games leave it up to the players to
handle who views the information presented and when. Using augmented reality, board
game elements such as individual cards can be seamlessly integrated into the gameplay
sidestepping the issue altogether. The Eye Of Judgment [Wikd] is a good example of
how this can work in practice. Each player hold a number of cards hidden from the
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others, while still playing with the same computer. If only one player is participating
in the game, she can play against the computer. It has a hidden deck that the player
cannot see, and plays by a set of rules that the player is not immediately aware of.

• Participation - Using augmented reality allows for a potentially seamless integration
of a computer opponent into a board game. Computer controlled elements can exist
exclusively in the virtual world and still inform players of their status, without burdening
them with the task of manipulating them. If speakers are available, the computer can
communicate its intentions aurally as well as visually. In addition to creating an artificial
intelligence which can interact with other players, the computer could also act as a
surrogate player, allowing for a person in a distant location to participate in a local board
game. The Eye Of Judgment [Wikd] allows for all types of play combinations: Player
Vs. Computer, Local Player Vs. Player, Remote Player Vs. Player, and Computer Vs.
Computer. Most computer games already allow for computer opponents to participate,
and for players to join a game from a remote location.

• Assistance - Board games require a set of rules to be learned before actual play can
begin. Computer games also adhere to a number of rules. The key difference being
that with board games, the players themselves must enforce, and therefore know the
rules. But even though computer games only inadvertently allow the players to perform
unauthorized actions, most computer games have a set of mechanics, which the players
must learn in order to fully enjoy the game. It is common for modern computer games
to contain a tutorial explaining most of the key concepts, there by engaging the player in
play as soon as possible. This also relieves the player of reading a lengthy explanation of
how the game works, and possibly turning the player away from the game before any play
has begun. Using augmented reality, this concept can be incorporated into board games.
The computer can help the player complete a tutorial and/or continuously provide
support during game play. I believe this could help improve the learning curve for almost
any given board game. If individual displays are used, the assistance can be individually
tailored and hidden from other players. Szalavári et al. [SEG98] experienced that the
help provided in their augmented reality game was used extensively by the players.

• Increased Social Experience - Board games are almost by definition a social experi-
ence, since few can be played alone. On the other hand, single player computer games
are quite common, as are multi-player computer games. I believe that by shifting a por-
tion of the game out into the real world, computer games can be made more sociable.
Both for player, as well as non-players.

In between players the social interaction is increased because the players are potentially
as close to each other, as with a board game. Individual elements of the game can
be interacted with by either player, possibly even at the same time. Players can read
each others reactions and interact much closer than in a computer game. For example,
if two players are engaged in an online strategy game, they can often communicate
vocally. But using only vocalization still leaves room for interpretation and can lead to
misunderstandings. If both players are situated in-front of each other, each player can
literally show the other what they intend.

For by-standers (non-players), the situation is slightly different. In computer games, the
player is often in control of what information she wishes to see. The player continuously
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interacts with the game to find the information which is most important at any given
time. Bystanders who are not actively participating will therefore have a hard time
grasping what exactly is going on, especially if they have no previous knowledge of the
game being played. If some of the game elements are present in the real world, the
player can still keep her focus by only looking at what interests her, and bystanders
are free to examine which elements they find interesting. If the surrounding people are
more aware of how the games is played and how the player is doing, I believe this will
encourage more interaction between the player and non-players.

It is important to note that these advantages are not necessarily exclusive to the combina-
tion of board games and computer games using augmented reality. They are ideal advantages
that can otherwise be hard to achieve depending on the medium (analogue or digital). For
example, in the fictitious online strategy game briefly mentioned before, each player could
be given a set of in-game tools to improve coordination in between players. One such tool
could allow each player to draw directly on the virtual battlefield to convey their intention.
Improving the interaction in between players would make the game more sociable, without
combining it with board game elements or using augmented reality.

Although the use of augmented reality can provide a number of advantages based on the
situation it is applied in, there are also some possible disadvantages that should be considered.

• Reliability - Depending on the software and applied technology, the augmented reality
provided by the computer may be flawed or unreliable. This thesis, and a number of
the projects related to it [Oli, Kat, Fia, RA00, WAM+], use a recognizable pattern to
perform pose estimation. Consequently, if the pattern is not recognized, the computer is
unable to perform the pose estimation. This can either be caused by objects obscuring
the pattern or improper lighting. Objects obscuring the pattern can be compensated
for by using multiple markers [KB99] or multiple image sources. Improper lighting is
tolerable if a robust detection algorithm is used. The impact of both these pitfalls can
be reduced, but neither of them can be completely avoided. If no marker is visible, the
computer cannot perform pose estimation, and if there is no light, the computer will be
unable to see anything.

• User comfort - Depending on how the augmented reality is presented to the user,
the experience can lead to feelings of discomfort. A number of AR projects require
the user to wear head mounted displays, which could potentially lead to eye strain
depending on the screen visualizing the virtual environment. Moderate use and high
quality equipment would reduce this problem. Köffel et al. mention user comfort as
one of the evaluation heuristics in their project [Köf07].

• Reduced social experience - Although augmented reality can be used to make games
more sociable, it should also be noted that the opposite effect can also occur. Board
games which previously required multiple human players to play, could potentially now
be played alone. In addition, augmented reality applications utilizing head mounted
displays may exclude other by-standers from participating, or even properly observing
the events unfolding making the experience in general less sociable. Providing an abun-
dance of head mounted displays, or an alternate public display of the augmented reality,
would minimize this issue.
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The above list only notes some of the potential disadvantages regarding augmented reality.
The problems discovered during the testing procedure for the game prototype, developed for
this thesis, is detailed in Section 11.
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5 Projective geometry

This section gives an introduction to projective geometry and other related concepts rele-
vant for the understanding of this thesis. Readers with a thorough knowledge of projective
geometry and camera representation may skip this section.

The examples provided in the section are assumed to be in a two-dimensional space unless
otherwise stated. Two dimensional examples are much easier to visualize than three dimen-
sional ones. The three dimensional case is often just a generalization of the two dimensional
one.

5.1 Euclidean and Projective Geometry

Euclidean geometry, attributed to the Greek mathematician Euclid, is the geometry that
most people are familiar with. It helps describe the shape of objects, lengths and angles in-
between lines and/or other shapes. Projective geometry can be considered similar to euclidean
geometry, except that it is much less restrictive. Formally, euclidean geometry is considered
to be contained within projective geometry. However, euclidean geometry is not what we see
when we view the world. We see a perspective projection of the world. A projective space
within which almost everything changes depending on the perspective it is viewed from. For
example, from most perspectives, a circle looks like an ellipse. Depending on the perspective,
a square can look like a trapezoid. One of the few things that remain constant during a
perspective projection is the the concept of straightness. Straight lines remain straight, no
matter where they are viewed from.

In euclidean geometry, parallel lines never meet by definition. Most parallel lines we, as
humans, perceive in the world seem to meet in the distance. A good example of this are train
tracks. Two lines that undeniably run side-by-side and (ignoring complex train crossings)
never meet. Yet when viewed from most angles, the train tracks always seem to meet at
the horizon. This is one of the key differences between euclidean and projective geometry.
In euclidean geometry, two lines almost always meet in a point. The only exception to this
are lines that are parallel. But exceptions can lead to complications, and in many cases it is
easier to simply state that all pairs of lines intersect at some point. Lines that are parallel
are claimed to intersect at infinity. According to Hartley and Zisserman ”(...) this is not
altogether convincing, and conflicts with another dictum, that infinity does not exist, and is
only a convenient fiction” [HZ04]. A solution to this problem is to extend the euclidean space
with these points at infinity and referring to them as ideal points.

By introducing these points at infinity, euclidean space is transformed into projective
space. A space which in many aspects is similar to the familiar euclidean space, yet also
includes these new ideal points at which parallel lines meet.

5.2 Homogeneous Coordinates

In classic euclidean geometry, a point is represented by a pair of coordinates (x, y). Euclidean
space is homogeneous and there is no distinct origin. An origin can be chosen at will and
the relation between two or more points simply depends on the chosen coordinate frame. As
established, euclidean and projective geometries share a number of similarities. But points
placed at infinity is a concept restricted to projective geometry. It is useful to distinguish
which points are at infinity and which are not. Homogeneous coordinates allows us to do
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exactly that.
A point in euclidean geometry (x, y) is represented as (x, y, 1) in homogeneous coordi-

nates. Any multiplication by a non-zero scalar k yields a new set of coordinates which, is an
equivalent representation of the same point:xy

w

 = k ∗

xy
w

 =

k ∗ xk ∗ y
k ∗ w


Therefore, in order to arrive at the euclidean representation of the point, all that is required

is to divide every coordinate with w, yielding the euclidean representation:xy
w

→
x/wy/w
w/w

 =

x/wy/w
1


A question which springs to mind is what to do when w = 0. In ordinary arithmetic (using

only real numbers), dividing by zero has no meaning. This is where homogeneous coordinates
are especially useful in regards to projective geometry. Points where w = 0 are considered to
be ideal points (and lie at infinity). Since dividing something by zero yields a meaningless
expression, this prohibits ideal points, mathematically, from entering pure euclidean space
which fits perfectly with the theory. Extending this concept into a third dimension is just
a matter of adding an additional coordinate. In the two dimensional case just described, all
the ideal points can be considered to form a line at infinity. In the three dimensional case
consisting of 4 coordinates (x, y, z, w), the line at infinity becomes a plane.

5.3 Representing Cameras

Recognizing and tracking elements in the real world is an integral part of this thesis, which
means cameras and related theory is as well. The following text provides an introduction to
existing camera models.

If three dimensional space is to be approximated by a two dimensional representation, a
projection is needed. A camera is usually the medium chosen to conceptualize how a projec-
tion is performed, both mathematically and practically. Not only are cameras a good tool
in understanding how a projection is performed, but they are also essential in the equivalent
real world process.

It is important to distinguish between the two types of cameras related to this thesis.
Real-world CCD (Charge coupled device) cameras and virtual cameras. The theory and
mathematics described in this section relate to both types. For the CCD Cameras, the theory
is a sufficient approximation of how cameras operate in the real world. For virtual cameras,
it is the actual theory applied in modern rendering applications and graphics hardware, when
simulating a camera.

The cameras described in this section are known as pinhole cameras, also shown in
Figure 1(a). They are an ideal representation of a camera, with an infinitely small aperture
size. Therefore, every ray of light (or projection) entering the camera and projecting an image
to the back of it must travel the same one point in space, known as the camera center. In
Figure 1(a), the camera center is where the two red lines meet. Cameras in the real world do
not have an infinitely small sized aperture, but use optical lenses in order to focus the light to
a single point. These cameras are therefore referred to as finite cameras. The pinhole camera
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Figure 1: Camera Models. (a) A pinhole camera with an infinitely small aperture. (b) A
model equivalent to the pinhole camera. Image of Arcade Machine credited to Driggs et al.
[DB].

model does not describe geometric distortions or blurring of unfocused objects, as can occur
with a finite camera. But it is an acceptable approximation within the bounds of this thesis.
As a further simplification, the viewplane (on to which the image is projected) will be placed
in front of the camera center, as shown in Figure 1(b). This makes the model much easier to
describe, and hopefully understand.

Figure 2 shows a more detailed version of the pinhole camera model. In the figure, it
can be seen how the point iE, which exists in a three dimensional euclidean space (R3), is
projected on to a two dimensional euclidean space (R2). For simplicity sake, the camera
center is used as the origin of the coordinate system. The point iE = (ix, iy, iz)TE is mapped
to the image plane as follows:

(ix, iy, iz)TE → (fix/iz, fiy/iz)TE (1)

As mentioned earlier, homogeneous coordinates solves the problem of perceiving points at
infinity, yet still allowing points to exist both in euclidean space and projective space. Readers
familiar with graphics rendering will know that homogeneous coordinates are especially useful
since they allow for many types of transformations to be expressed in matrix form. This allows
for a number of various transformations (translations, rotations, skew and projections) to be
combined into a single matrix. Homogeneous coordinates also allow the operation performed
in eq. (1) to be performed using a matrix:

ix
iy
iz
1

→
fixfiy
iz

 =

f 0 0 0
0 f 0 0
0 0 1 0



ix
iy
iz
1

 (2)

As eq. (2) shows, the resulting calculation using the matrix is essentially the same as in
eq. (1). The homogeneous coordinates ensure that the first two coordinates are divided by
last, in order to return the point to euclidean space. This is shown in the following equation:
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Figure 2: Pinhole camera geometry. (a) A detailed isometric perspective of the pinhole
camera model shown in figure 1(b). C is the camera center and p is the principal point.
The point being projected onto the image plane is i. (b) Is a side view of the same model as
presented in (a). As the figure shows, the y coordinate of the point i on the image plane is
calculated by the equation f ∗ (iy/iz). f being the focal length of the camera, and iy/iz is
the ratio of inclination of iy over iz from the camera center.

fixfiy
iz

→ (
fix/iz
fiy/iz

)
E

The 3x4 matrix in eq. (2) is a very simple homogeneous camera projection matrix con-
taining the cameras intrinsic parameters. A more accurate and complex version of this model
is detailed in the following subsection. In addition to the matrix containing the intrinsic pa-
rameters, it is also necessary to define where the camera is located. How this is accomplished
is explained in Section 5.3.2.

5.3.1 Intrinsic Parameters

The intrinsic parameters of a camera model its inner workings. For example, how the lens in
the camera influences the image being captured. As already revealed in the previous section,
the matrix describing intrinsic parameters of the camera (also known as the camera calibration
matrix) in eq. (2) is rather simple and unrealistic. A more accurate version is shown below:

K =

fx s px

0 fy py

0 0 1

 (3)

This is the actual matrix used in this thesis to represent the cameras internal parameters.
The matrix shares a number of parameters also represented in the projection matrix used for
actual graphics rendering. Exactly how the two matrices relate to one another and why this
is of importance is described later in Section 8.
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The paragraphs below detail each of the parameters in the matrix. When describing the
parameters represented in the matrix, it is useful to consider the camera model containing a
collection of rays projecting from the camera center through the image plane. Each ray can
be considered to represent a single pixel. What the ray hits is eventually visualized on the
image plane where the ray intersected with it.

Focal length (fx, fy) The focal length, f , is derived from the distance between the camera
center and the image plane, as shown in Figure 2. The focal length of a camera affects the
perceived perspective distortion in the resulting image. The focal length determines how close
or far apart the rays projecting from the camera center are. If the focal length is very high,
the rays are very close and the features of the picture will appear to be very flat and lacking
in depth. If the focal length is very low, the rays will be far apart and the image will appear
to have a very distorted perspective, because a short focal length, results in a very wide shot.

Note that the matrix shown in eq. (3) contains a focal length for both the x and y axis.
This is because real cameras, in general, do not have the same focal length along each axis.

Skew (s) The skew parameter, s, helps model the rare case where the x- and y-axis are
not perpendicular. The rays projecting from the camera center conform to the shape of the
image plane. A skewed image plane will lead to skewed rays. Significant skew is very rare
and the parameter is often just assumed to be 0.

Principal Point offset (px, py) Previously, the origin of the image plane coordinates was
assumed to lie at the principal point. The origin is usually placed in one of the corners of the
image plane. In this thesis, the origin was placed in the upper left hand corner. The principal
point offset describes where the most ”center” projection ray intersects with the image plane.
In Figure 2, this would be the optical z-axis intersecting the center of the image plane. For
real cameras, the principal point is usually located near the center of the image plane. In
virtual cameras, it is often at the exact center.

An offset principal point not located in the center of the image plane, would mean that the
rays projected from the camera center, all veer in the direction of the image plane, creating
a shear.

Radial distortion Radial distortion is not commonly associated with the camera calibra-
tion matrix. This is because the intrinsic parameter matrix, neither describes, nor compen-
sates for this distortion in any way. However, since radial distortion is an artifact created due
to the inner workings of a real camera, I decided to include it among the other factors that
can be compensated for.

So far, the camera model assumes that the projected rays emanating from the camera
center are linear. That is to say, the camera center, the point on the image plane and the
point in the world are all intersected by one straight line. In a real camera, using a lens, this
is not the case. In actuality, the rays are bent when passing through the lens. The artifacts
caused by this bending are easily spotted as straight lines are projected as being non-straight
lines. Figure 3 shows images from two different cameras of a checkerboard pattern. There is
a noticeable amount of radial distortion in both.

As already mentioned, radial distortion is not a part of the camera calibration matrix, is
usually compensated for in post-processing.
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Figure 3: Radial distortion. Pictures from two different cameras of a checkerboard printed
onto paper. Each image shows signs of radial distortion, the right one much more than the
left one. The left image has been captured with a Logitech QuickCam Pro 9000. The right
image comes from a Mini HiRes Webcam WB-3300p. Note that the printed checkerboard is
slightly uneven, but as the images were taken from directly above the effect this has on the
image is negligible.

5.3.2 Extrinsic Parameters

Just like the intrinsic parameters model the internal workings of a camera, the extrinsic
parameters model the external workings of the camera. Specifically, the extrinsic parameters
describe a cameras position and orientation in the world.

In the pinhole camera model shown earlier in Figure 2 the camera center is assumed
to be located at the origin of the world coordinate system. In practice, this is usually not
the case. It is preferable to be able to place and orient the camera in any way possible.
Additionally, one may wish to use several cameras, and often one will want to place them in
different locations. In fact, the camera center is often anywhere, but at the origin of the world
coordinate frame. For mathematical and practical reasons it is preferable to permanently keep
the camera center at the origin of the coordinate system. But we cannot move the camera
around while simultaneously restricting it to the origin of the coordinate system. The solution
therefore is to use multiple coordinate systems. One for each camera, and another for the
world it must project. Assuming both coordinate systems are scaled equally and orthogonal,
they are related via a rotation and a translation.

In order to project anything on to the image plane of the camera, it must share the same
coordinate system as the camera. What is needed is an operation to bring points from one
coordinate system into the other. Assuming our previously defined point iE resides in the
(euclidean) world coordinate system and its counterpart representation icamE resides in the
(euclidean) camera coordinate system, then they are related by the following transformation:

icamE = R(iE − c) (4)

where R is a 3 × 3 rotation matrix representing the orientation of the camera coordinate
frame (within which the image plane lies), and c is a 3×1 vector containing the camera center
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expressed in world coordinates. The relation in eq. (4) can be expressed in homogeneous
coordinates as

icam =
[
R −Rc
0 1

]
i

Given this formula, every point in world can be transformed to the camera coordinate
system. What remains is to project them onto the image plane using the previously defined
eq. (2). This leads to the following relation between a point i, and its projection on the image
plane iimg

iimg = K
[
I | 0

] [R −Rc
0 1

]
i

which is also expressed in the matrix P commonly referred to as the camera matrix

P = K
[
R | t

]
=

fx s px

0 fy py

0 0 1

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz

 (5)

where t = −Rc. The homogeneous counterpart to P is a simple extension of the matrices:

fx s px 0
0 fy py 0
0 0 1 0



r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1


Just like the matrix describing the intrinsic parameters, the matrix

[
R | t

]
shown in

eq. (5) is closely related to a matrix used in graphics rendering. Specifically, the modelview
matrix. Discrepancies between the two is explained later in Section 6.3.
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6 Pose Estimation

The pose estimation algorithm presented and implemented in this thesis is based around
homographies. According to Harley and Zisserman, given four or more points in the world,
their corresponding positions in an image, as well as the internal parameters for the camera
that produced the image, it is possible estimate the position and orientation of the camera in
question [HZ04].

This pose estimation algorithm was chosen for two reasons. First, it performs pose es-
timation based on a single image, and can therefore be implemented using a single camera.
This has the benefit of making the algorithm simpler than its multiple image counterparts.
Second, it utilizes an analytic/geometric approach to pose estimation, as opposed to a learn-
ing based method. The analytic approach requires a predetermined amount of knowledge
regarding the camera and/or its surroundings, in order to properly determine a pose. On the
other hand, a learning based method is provided with a large set of images from which it
can estimate the required parameters. The analytic/geometric approach is preferred since it
relies on pre-determined parameters and in general leads to a simpler algorithm.

The following is a simplified version of the pose estimation algorithm:

1. Capture an image with the camera.

2. Identify a recognizable pattern (tag) in the image.

3. Extrapolate four corners and their coordinates from the recognized pattern.

4. Estimate a homography between the four extrapolated corners in the image and four
corresponding virtual points.

5. Extract the cameras position and orientation from the homography.

Details regarding each step, from identifying a pattern in the image to estimating the
position and orientation of the camera, is described in the following three subsections.

6.1 Tag Detection

Using the previously mentioned pose estimation technique, identifying four unique points is
necessary. A number of the related projects [Kat, WAM+, Fia, Lil03, Rek98, RA00] men-
tioned in Section 3, even ones using a different algorithm, have this requirement. A common
solution to the problem is to use a very visible and identifiable pattern. Specifically, a recog-
nizable pattern printed on a flat surface. This solution is especially appealing in this thesis,
considering board games often have game pieces which must also be identifiable (for players).
Exactly how this tag looks is irrelevant, as long as it can easily be recognized by both the
computer and the players. An ideal choice is a square, considering it is the simplest of all
geometric shapes made out of four points.

The tag shown in Figure 4 was chosen after a number of iterative design steps. The thick
black border assures that the tag is easy to spot in as many places as possible when within the
field of view of the camera. The size of the tag and the thickness of its design elements have
been balanced to try and allow for the best detection while still allowing for as many tags
as possible to fit within the view of any given camera. The end result was reached through
imperative testing, and has yielded satisfactory results with the cameras used in this thesis.
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Figure 4: A Tag. The Tag used in this thesis for pose estimation. It is shown to scale
and has a size of 5cm × 5cm. The top of the black border contains an orientation mark
(1, 8cm × 0, 2cm) and the middle of the tag (3cm × 3cm) contains an ID code for unique
identification.

Figure 5 shows how the original image captured by the camera is manipulated to identify
any tags which may be within the field of view. The following is a complete list of the steps
taken to detect any tags within the captured image:

1. The captured color image is corrected for radial distortion. The reduction in image
distortion should lead to more easily detected patterns and and more correct perspective.

2. The corrected color image is converted to gray scale. This is necessary to perform
thresholding on the image. Section 6.1.1 details necessary considerations regarding
color-use for the recognizable pattern (tag).

3. The gray scale image is converted to a binary image, using the adaptive thresholding
algorithm for the DigitalDesk [Wel93]. The same algorithm is also used in the cybercode
tagging system [RA00], a predecessor of the technology used in the Eye Of Judgment
[Wikd]. The algorithm contains a few adjustable parameters which have been slightly
altered to better suit the detection needed in this thesis. The number of pixels considered
in the thresholding history has been increased since the tags fill more foreground than
individual letters. As the algorithm would scan a broad side of a potential tag, it
would eventually declare it partially consist as background due to a relaxation threshold
parameter. To avoid this problem, the relaxation threshold has been removed to improve
detection.

4. Now that the image has been converted to a binary format, it is processed to detect
contours. Every detected contour is approximated to a polygon which must satisfy the
following criteria:

(a) The polygon must consist of exactly 4 corners, otherwise it isn’t a square. It must
also comprise at least 1000 pixels in size to filter out any noise detected as a square.
While it is possible for an actual tag to be contained within the space of a thousand
pixels, it will be considered to be too small to detect properly. Finally, the polygon
must be convex, just like the tag shown in Figure 4. As previously mentioned, a
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Figure 5: The tag detection process. Reading the images from left to right and top
to bottom shows the individual steps taken by the algorithm to detect potential tags in
the image. Top-Left: Original Webcam image. Top-Right: Radial distortion corrected
image. Middle-Left: Gray scale image. Middle-Right: Binarized Image. Bottom-Left:
Contour-detected image. Bottom-Right: Tag-Detected image. This image is mainly used
for debugging purposes to give usable feedback on what the computer has recognized in
original image. The blue borders signal a detected tag. The red dot indicates the center of
the orientation mark. The green dot indicates the center of the tag. The blue dot marks the
same top right corner of each tag. The tiny red dots show where the identification algorithm
reads its pixel values.
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projection will preserve the properties of straightness. Thus, the straight lines of
a square, no matter the projection, will remain straight, and therefore it must be
convex in the image to be considered a valid tag. All that remains is to make sure
that the potential tag and its orientation mark satisfy the following criteria:

(b) First, the identification of an orientation mark is key to ensuring a tags authenticity.
The polygon is checked for contours detected inside of it. Every internal contour
is checked to be at least 25 pixels in size to filter out any noise. Finally, the
ratio between the potential tag and the orientation mark (tagsize/holesize) must
exceed a value of 40, but also be less than 140. Although the exact ratio between
the size of the tag and the size of the orientation hole is known from a top down
perspective, this ratio changes depending on how the tag is projected on to an
image plane.

5. The four points of the estimated polygon are assumed to be a real authentic tag with
which a pose can be calculated.

Initially, the algorithm had an additional step in between converting the image to a binary
format and detecting contours in the image. To filter out noise, the mathematical morphology
operations dilate and erode were applied to the binarized image. However, initial tests revealed
that the operations did more harm than good and actually disrupted the application from
detecting valid patterns. An example of this can be seen in Figure 6. In the top left of the
image a dilate operation would break up the border of the a tag, rendering it unrecognizable.

6.1.1 Tag Color

A prominent feature of any pattern is its color (or lack thereof). Colors are often used to
differentiate between similar looking objects. A good example is a traffic light. In addition
to the individual position of each lamp, colors help to clarify what status the traffic light
currently has. As previously stated, the exact shape and appearance of the tag is irrelevant
as long as it can be easily recognized by the computer and the players. This can create a
conflict of interest, as some patterns which are most easily recognized by players, may not be
as recognizable for a computer and vice versa. For players, color are ideal to differentiate in
between game elements. For computers, colors can be difficult to detect properly depending
on the camera being used. Figure 7 shows two images taken with a low quality camera. Lack
of lighting not only reduces contrast but also renders some colors almost indistinguishable
from others. But even with proper lighting some colors are hard to detect.

Because precise color detection is neither easy, nor necessary, I have chosen not to use it
when determining a tags proper identification.

However, the player must still be considered in this regard. Colors are ideal to help players
uniquely identify game elements. Therefore, the tags should preferably be colored without
interfering with the adaptive thresholding performed on the image. The adaptive thresholding
technique [Wel93] mentioned in the tag detection algorithm was originally designed to detect
text on a light background. In order to still use this technique it is important that the
colors translate to a dark rather than light color value, when converting them to gray scale.
Otherwise the tag risks being detected as background. Slightly altering the threshold values
for the algorithm mentioned previously, and performing imperative testing showed that dark
green and blue tags, shown in Figure 8, were ideal candidates. Originally red was considered
as opposed to blue, but was discarded due to the prevalence of color blindness.
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Figure 6: Mathematical Morphology pattern disruption. This is an image taken before
it has been subjected to mathematical morphology. Pay attention to the five tags in the top
right hand corner. Two of the tags show distinct white sections in the middle of the otherwise
black borders. This is caused by the adaptive thresholding algorithms prolonged exposure to
dark color. It eventually considers it to be background, and classifies further pixels thus. A
dilution operation would break the tags borders and render it unrecognizable.

6.1.2 Tag Orientation

As previously revealed, the small white hole in the tag shown in Figure 4 is used to identify
the orientation of the tag being detected. While it is not a strict necessity for successful pose
estimation, it is useful to know from which side the camera is viewing a particular tag. As
explained in the detection algorithm, the orientation mark is detected through a series of
tests. Once it has been detected, it can be used to always uniquely identify the corners of the
tag. Since the pose estimation algorithm calculates the correspondence between four points
in an image and their counterparts in the world, it is vital to always associate the same points
in the image and the world.

The method described in this section is just one of many possible methods to uniquely
identifying the corners of a detected polygon. This approach was chosen because it is simple,
works using a binary image, and also allows for human players to easily identify the orientation
of a given tag.

The algorithm for uniquely identifying each tag corner is as follows:

1. Calculate the exact center of the tag and orientation mark.

2. Calculate and normalize the vector from the center of the tag to the orientation mark.
This vector will be referred to as dirV ec.

3. For each corner point, do the following:
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Figure 7: Two images with different lighting. In the poorly lit (left) image the different
elements become hard to distinguish. The fourth color, from the right, at the top of the
image, almost fades into the background, along with the colors the bottom right. In the
brightly lit (right) image, most elements are clearly visible. Note that the top right square is
actually green, although it appears as slightly blue in this light.

(a) Calculate and normalize the vector from the center of the tag to the corner. These
will be denoted as cornerV ec1, cornerV ec2, cornerV ec3, and cornerV ec4.

(b) Calculate the signed angle α between the dirV ec and the cornerV ecn:

α = atan2(cornerV ec⊥n · dirV ec, cornerV ecn · dirV ec)

where the function ”atan2(y, x)” performs an operation similar to the expression
tan−1(y/x) except that the signs of both quadrants are used to determined the
quadrant of the result. The expression aV ec⊥ · bV ec is the notation for the ”Perp
Dot Product” and is calculated in the two dimensional case as follows

aV ecx ∗ bV ecy − aV ecy ∗ bV ecx

The signed angle reveals on which side of the orientation mark the corner is located
as well as which of the two points on either side is closest to the orientation mark.

(c) Sort the points in the desired order.

Due to the nature of perspective projections, the algorithm described works given any
projection on to the image plane as long as the tag and its elements are properly recognized.

6.1.3 Tag Identification

There are many conceivable situations where we would want to identify one tag from another.
In most board games, players each have their individual pieces only they are allowed to
interact with. Individually identifying each players elements is crucial in order for game play
to proceed properly. The following approaches have been considered to individually identify
tags:
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Figure 8: Two differently colored tags. Two tags shown to scale with the colors used in
the final version of the tags. The actual tags used for testing were printed using the same
printer as this thesis has been printed on, so the colors are near exact, ignoring any eventual
printer color fluctuation.

• Identify each tag uniquely in every frame.

• Identify a tag uniquely upon its first appearance and estimate future positions based
on movement.

• Combine the two above mentioned approaches.

I have chosen the first of the three possibilities as it is potentially the simplest of them.
Continuously tracking elements based on their movement is complex and can cause many
false positives unless properly implemented. Combining both approaches could potentially
yield the best case solution, but is beyond the scope of this thesis.

As described in Section 6.1.1, I have chosen not to rely on colors when performing tag
detection. The alternative is to detect a tag based on its shape. Most of the related projects
which use tags, as a means of identifying four unique points in an image, also recognize
a bit pattern integrated into the tag. The only exception is ARToolKit [Kat] which relies
exclusively on a template pattern matching technique. To keep things as simple as possible,
I have chosen to pursue a solution using bit patterns. The reader may have noticed that the
tag shown in fig. 4 has an open white space in the middle. This is an ideal place to integrate
a bit pattern into the tag.

Depending on how the tag is projected on to the image plane, it will become more or
less distorted depending on the angle of the camera to the tag. Preferably, the bit pattern
should be easily recognizable regardless of the distortion, and not require undistortion before
it is identifiable. As previously stated in Section 1.2, the cameras exact position is unknown.
The only guarantee is that the camera has the entire playing area are within the view. The
tags themselves may have any position and orientation. The bit pattern should be as rec-
ognizable as possible from any given angle. Therefore, each bit to be identified should be
allotted the same space in the pattern to give each an equally good chance of being detected
when projected on to the image plane. In other words, the bit pattern must be completely
symmetrical. I have chosen to use nine bits in the bit pattern code. This will allow for a
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sufficient amount of unique tags (a total of 512 to be precise) and also yields a significant
space for each bit to fill. Figure 9 shows a tag containing a randomly selected bit pattern.

Figure 9: A Tag with a randomly chosen bit pattern. This particular tag has a value
of 9, since the least significant bit (bit 0) is set as well as bit 3. 1 + 8 = 9.

Knowing the exact dimensions of the tag and the location of its four corners in an image, it
is straight forward to determine the location of the bits on the tag. Calculating a vector from
both diagonally opposed corner pairs forms an X across the tag. How each bit is determined
using these two vectors and their significance is shown in Figure 10.

Although a perspective projection distorts the size and shape of the tag, initial testing
has shown that the large bit pattern compensates for the distortion.

6.2 Homography Estimation

The homography is an essential part of the pose estimation technique, used in this thesis. As
previously described, the cameras position and orientation can be estimated from a homog-
raphy. This section explains how the homography created.

There are a number of ways to estimate a homography, which describes a numerical
relation between two sets of points. This section describes the simplest approach named the
Direct Linear Transformation (DLT) algorithm. The homography to be calculated is
a 3× 3 matrix defined only up to scale:

H =

h1 h2 h3

h4 h5 h6

h7 h8 h9


Since H contains nine elements, but is defined only up to scale, it is only the relation

between the values which are of importance. Therefore, the matrix contains a total of eight
degrees of freedom (dof) and a total of 4 unique points are required to constrain it. Each
point - being defined with homogeneous coordinates - is also devoid of exact scale. Each point
contains two degrees of freedom due to the relation in between the three coordinate values.
Four points each with two degrees of freedom yield a total of 8 dof, and will therefore fully
constrain the homography (H).

The homography H allows us to transform one given set of points into another, which
yields the following equation: x′i = Hxi. Where x′i and xi are homogeneous points in two
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Figure 10: A Tag and its identification pattern in detail. This particular tag has a
value of 9, since the least significant bit (bit 0) is set as well as bit 3. 1 + 8 = 9.

different sets. It is important to note that since the equation involves homogeneous vectors,
x′i and Hxi have the same ”direction” but are not necessarily equal. Transforming the two
points into euclidean space will however produce the same point for both points. In other
words, x′i and Hxi may differ in a non-zero scale factor. When using the homography H in
the above equation, xi consists of the virtual point set while x′i is the set of points from the
image plane projection.

Since the homography H produces a point with the same ”direction” as the corresponding
point in the opposite set, the cross product can be used to express the following relation:
x′i × Hxi = 0, where 0 is a vector of zeroes. This equation can be reduced via the following
steps. First, we denote the individual rows of the homography matrix H as h1,h2,h3 for the
first, second and third row respectively. This allows us to express

Hxi =

h1Txi

h2Txi

h3Txi


By decomposing the point x′i into its coordinate components (x′i, y

′
i, z
′
i), the cross product

equation mentioned above can be formulated more explicitly as

x′i × Hxi =

y′ih3Txi − w′ih2Txi

w′ih
1Txi − x′ih3Txi

x′ih
2Txi − y′ih1Txi


Because hjTxi = xT

i hj for j = 1, ..., 3, the equation above can be expressed as a set of
three equations in the entries of H
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 0T −w′ixT
i y′ix

T
i

w′ix
T
i 0T −x′ixT

i

−y′ixT
i x′ix

T
i 0T

h1

h2

h3

 = 0

Of the three equations, only two are linearly independent. The third row can be obtained
(up to scale) by multiplying the first row by x′i and the second row by y′i. Discarding the
third row yields the following set of equations:

[
0T −w′ixT

i y′ix
T
i

w′ix
T
i 0T −x′ixT

i

]h1

h2

h3

 = 0

This set of equations can then be re-written and expanded to the following:

[
w′ixi w′iyi w′iwi 0 0 0 −x′ixi −x′iyi −x′iwi

0 0 0 w′ixi w′iyi w′iwi −y′ixi −y′iyi −y′iwi

]h1

h2

h3

 = 0

It is safe to assume that the homogeneous part of the coordinates of the points in this
thesis are 1. Therefore, the set of equations can be further simplified to the following:

[
xi yi 1 0 0 0 −x′ixi −x′iyi −x′i
0 0 0 xi yi 1 −y′ixi −y′iyi −y′i

]h1

h2

h3

 = 0

Each pair of point correspondences contribute with two unique equations. Given four
pairs of points with no three being collinear, a total of eight unique equations are available.
Stacking them together yields the following final equation:

x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1
0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1
x2 y2 1 0 0 0 −x′2x2 −x′2y2 −x′2
0 0 0 x2 y2 1 −y′2x2 −y′2y2 −y′2
x3 y3 1 0 0 0 −x′3x3 −x′3y3 −x′3
0 0 0 x3 y3 1 −y′3x3 −y′3y3 −y′3
x4 y4 1 0 0 0 −x′4x4 −x′4y4 −x′4
0 0 0 x4 y4 1 −y′4x4 −y′4y4 −y′4



h1

h2

h3

 = 0

With 9 unknowns and only 8 equations the system is underdetermined. But, as previously
explained, we are satisfied with a solution up to an unknown scale. Therefore the set of
equations is sufficient for calculating a homography for the purposes of this thesis.

6.3 Camera Position and Orientation Extraction

Now that the homography relating the virtual points to the points projected on to the image
plane has been estimated, it’s possible to extract the cameras position and orientation in
relation to the tag. According to Hartley and Zisserman [HZ04], the matrix

[
R | t

]
first

mentioned in section 5.3.2 can be computed from the matrix
[
r1, r2, r1 × r2, t

]
, where[

r1, r2, t
]

= ±K−1H/||K−1H||
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Where K−1 is the inverse of the camera projection matrix described in section 5.3.1 and H
is the estimated homography described in the previous section.

The matrix
[
r1, r2, t

]
describes the relation between the virtual points and its related

camera coordinates. The first two columns can be thought of as rotation vectors while the
third describes a translation. But the matrix is not usable in its immediate form. Each of the
columns contain a scaling factor. We want to maintain the distance and relation in between
the virtual coordinates and only modify their distance from the camera. In other words, the
tag the camera projects on to its image plane must not be allowed to change in size, but
should instead variate its distance from the camera. Thus, we must extract the scaling factor
from the two rotation columns and re-implement it in the translation column

ts =
t

||r1||+||r2||
2

Finally, we must normalize the rotation vector to make sure our final rotation matrix is
not only orthogonal, but also orthonormal

Rs =
[
||r1||, ||r2||, ||r1|| × ||r2||

]
We now have a 3x4 matrix describing the position and orientation (extrinsic parameters)

of the camera viewing a tag: [
Rs | ts

]
This matrix is nearly identical to the modelview matrix commonly used in computer

graphics. The key difference between the two, is the sign in front of the translation vector.
The translation vector in the equation above, must have its sign inverted (by multiplying
with −1), to convert it to the modelview matrix standard used in computer graphics.
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7 Game Prototype

One of the goals set forth in this thesis is to develop a prototype game, which makes use of
pose estimation. Preferably, the game should incorporate some elements from both board and
computer games, so that it is uniquely suited for the type of interaction augmented reality
allows for. The intentions behind creating a prototype game are two fold. First, to provide
a proof of concept and test platform to evaluate how well the pose estimation functions in a
real application. Second, to gain insight into how this type of tactile interface works when
applied in a game.

Developing a fun and entertaining prototype game is not a straight forward matter. There
is no tried and true approach to creating a game concept, which will entertain a select group
of players, let alone players all around the world. A brief glance at most modern game titles
today makes this apparent, as a very large portion of them are direct sequels, or at least
reminiscent of previous successful titles. Even though many of the produced games are based
on previously existing games, there are a number of tested and applied approaches to creating
new game concepts and refining them into working prototypes [FSH04]. It should be noted
that even creating the prototype, let alone the entire game, is not a short process and can
take well up to a year or more, which is far beyond the scope of this thesis. Instead of creating
a new game concept from scratch, I have chosen to examine a few existing ones and adapt
one of them for use in an augmented reality application. Below I list some criteria, that the
chosen and final adapted concept, should meet. They are to be considered general guidelines,
and not strict rules. They serve as a personal guide, as to what I believe will yield the best
result, in for a game using augmented reality.

• Simple Game Concept - There are several reasons as to why the adopted game
concept should be simple by design. There has to be sufficient time to implement a
prototype version of it. Testing a shallow game is more straightforward than testing
a complex one. Determining proper cause and effect is easier, as less variables are
involved. A simple game concept is also easier to learn (for the purposes of testing with
players). An ideal game concept would be one that only requires one or two plays until
a player has a firm grasp of it.

• Minimal complex physical interaction between game elements - This is a rather
vague concept, and is best described by example. The European pick-up sticks game
Mikado [Wikg] or Jenga [Wike] are two games which do not fit into the category of
”minimal complex physical interaction between game elements”. In these two games,
the individual game pieces form a whole, and together form a working game concept.
How the individual game pieces touch and pass force between each other, is crucial in
both games.

Games that do not fall into the category of ”Minimal complex physical interaction
between game elements” can still make use of augmented reality, but if the virtual parts
of the game require similar physical interaction, the software must be able to support
this in a stable and reliable fashion. Due to time constraints, such elements cannot be
integrated in the software developed for this thesis. Therefore, game concepts containing
or requiring such support are discarded.

• Pre-defined closed environment - As previously written in section 1.2, the software
recognizing various game elements will only make use of a single camera focused on the
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game area. As such, games that use a pre-defined and moderate amount of space are
ideal. Most board games satisfy this criteria.

• Active elements - Something rarely found in board games, yet almost universally
present in computer games. In my opinion, active elements make a game more engaging.
I also believe that it is easier to focus a players attention if something is actively drawing
it.

As previously mentioned in Section 3, a master thesis [Köf07] has developed a number of
heuristics for the evaluation of the type of hybrid game, that is to be implemented in this
thesis. It is beyond the scope of this thesis to fully evaluate the developed game concept, but
the heuristics developed in the mentioned thesis have been taken into consideration, during
the development of the prototype.

The following sections detail a number of game concepts that were considered as possible
candidates for the final prototype game. Due to time constraints, only a single concept has
been implemented as a complete prototype, to be tested.

7.1 Tower Defense

Tower defense [Wikm] is a computer game concept wherein the primary goal of the player
is to stop the enemies (sometimes referred to as creeps) from crossing the terrain from one
location to another. The enemies usually appear in waves (usually 20-30 enemies in a single
wave), giving the player a short time to prepare in between each one. The player has a
set of towers at her disposal, which she can place in a maze formation, in order to ensure
that the enemies take the longest route possible, in order to reach their destination. Some
towers are outfitted with weaponry, to wear down the enemies, and keep them from reaching
their destination all together. Each tower is often associated with a certain cost, which the
player must pay, in order to introduce it into the playing field. The player earns resources
by dispatching incoming enemies resulting in both a positive and negative feedback loop.
The better a player does, the more resources she is awarded to spend on even more powerful
towers. If she is unable to cope with the advancing horde she is allotted a smaller amount
of resources and, as a result, even less prepared for future foes. Advanced versions of the
concept include additional management, in the form of supplying each tower with a sufficient
amount of energy, or combining various forms of attacks to defeat ever more damage resistant
foes. The player wins the game if the amount of creeps that slip through the defense is small
(usually below 20-40). The player loses if too many creeps slips through (above 20-40), and
must restart the entire game.

Although this game concept was partially implemented in a very rough version, it was
eventually discarded due to the following reasons:

• Game concept too complex - Most versions of tower defense that I have encountered
have a number of core mechanics in-common. One of them is the path finding ability
of the artificial intelligence. It challenges the player to build some sort of maze, with
which to slow the enemies progression through the terrain. Unfortunately, few other
games resemble this style of play, and I believe that players would require a number of
attempts before becoming proficient with this game mechanic. It is possible to discard
this particular mechanic, but I fear that it would make the overall game concept too
dull. Another issue with the tower defense game concept, is that of balance. How to
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properly provide every player with a challenge is hard because there is an extensive
amount of variables to modify. Game board size, nr. of tower available, tower damage,
tower cost, enemy speed, enemy health, etc.

• Lack of interactivity - This shortcoming depends mostly on the player and her style
of play. If the player is very skilled, she could potentially create the optimal maze
and then sit back while the game unfolds with minimal interaction. Attempts to coax
the player into further interaction would solve this problem, but would probably make
the game concept more complex. Possible solutions to this issue includes forcing the
player to upgrade her towers to stronger versions, or continuously changing the enemies
entrance and exit positions forcing the maze to be reconstructed.

This was my initial choice for the game prototype, and I still believe that is would serve
as a good augmented reality game concept. It was discarded due to its complexity and the
time required, to properly implement a simple and balanced version of the game. The last
recorded video of this game concepts short-lived prototype is included on the supplementary
DVD.

7.2 Whack-a-Mole

Possibly the simplest of all the game concepts, Whack-a-Mole requires the player to counter-
act a number of moles appearing at random within the play area. To stop a mole from
appearing the player must place a tag on the spot where the mole is about to appear. The
challenge lies in how many moles the player can stop before her time runs out. It is the
simplest of all the considered game concepts.

Although this game concept satisfies all the guidelines mentioned above, I decided to
discard this game concept for the following reasons:

• Game concept too simple - The main concern regarding the simplicity of this game
concept, is that the players might become disinterested before sufficient data could be
collected.

• Non existent element interaction - Every game element is isolated from the others.
Apart from the fact that one mole should not appear on top of another, the elements
have no relation what so ever. I believe that this would lead to a less than ideal testing
platform.

Although this game concepts shortcomings stems from its simplicity, it would probably
be my second choice if there had been enough time to implement and test two prototypes.

7.3 Jigsaw Puzzle

An augmented reality jigsaw puzzle. Each tag represents a piece of the puzzle. Correctly
assembling the entire puzzle finishes the game. The faster the puzzle is finished, the more
points the player earns. A more complete version of the game could include a vast number of
puzzles using standard image files formats. The concept could also be extended by giving the
player a set of cubes to handle, each with a tag on every side. These six sides could provide the
player with a bigger challenge by forcing her complete puzzles in more than two dimensions.
This concept was only briefly considered and quickly discarded due to the following short
comings:
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• Complex implementation - In order for the game to work properly, a number of
different jigsaw puzzles should be created. If only one is made, the players experience will
be hampered by solving the same puzzle over and over. To avoid this, the implemented
prototype should be able to automatically divide a given image into an appropriate
number of jigsaw pieces for play. The game would also require an algorithm to detect
whether or not these elements are correctly placed, in relation to one another.

• Lack of active elements - The game concept is very passive. The most dynamic part
of the game is that the jigsaw puzzle can change after each level is complete.

7.4 Train Trax

The following is the game concept chosen for implementation as a prototype. As a result, it
is described in much greater detail than the previous game concepts.

The concept of Train Trax is loosely based on an old game called Pipe Mania [Wikj],
originally published in 1989. In the game, the player is in charge of placing an assortment
of random pipes to guide a constant flow of liquid through a level. Every time the player
places one pipe, a new random piece is made available. The player loses if the liquid running
through the pipes reaches a pipe-less area. The player wins if she manages to guide the liquid
through a required amount of pipes. In some cases the player is also required to finish the
constructed pipes with a special end section.

The game concept behind Train Trax is similar, but instead of guiding a constant flow
of liquid, the player is charged with the responsibility of guiding a constantly moving train.
The player does this by placing train tracks in front of the train. The object of the game is
to keep the train running for as long as possible, thereby earning the most points. A number
of different tracks are at the players disposal. Three straights, three turns, one crossing and
a random track. A single tag represents a single track. Which tag represents each of the
provided tracks is randomly determined when the game commences. Figure 11 shows each
track as it appears in the final version of the prototype game from a top-down perspective.
Every track works in a straightforward manner, apart from the random one. The random
track resembles the crossing track but sends the track in an unknown direction. The train
can emerge in one of three directions: left, forward, or right. The train is only guaranteed
never to return on the track it entered from.

Figure 11: The four different train tracks available from a top-down perspective.
From left to right the tracks are: a straight track, a crossing track, a random track, and a
turn track.
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The more difficult the track used, the more points the player earns. The crossing earns
the player 50 points, the straight 100 points, the turn 200 points, and the random track 500
points. Figure 12 shows step-by-step play through of a single game session. One of the key
differences between Train Trax and Pipe Mania is the fact that previously placed pieces can
be picked up and placed in a new arbitrary position. In Pipe Mania, once a pipe had been
placed and the liquid has started passing through, that piece could no longer be relocated.

A detailed step-by-step progression of a typical session is described below:

1. The application starts and the tags are placed in a haphazard fashion in front of the
camera.

2. Three black tags indicating the playing field are placed at a distance from each other,
and within the field of view of the camera. The size of the playing field only determines
the possible spawning locations of the train station containing the train. Ideal positions
for the tags are three corners of an underlying cardboard piece.

3. Once the three black tags are at their intended position, a fourth black tag, is placed
in front of the camera to signal that the player wishes to start the game. The starter
tag must be visible for a total of five seconds before play begins.

4. Once play begins, each tag reveals its associated track piece. The station containing
the track spawns at a random location along the edge of the playing field, always facing
toward the middle of it. The train station never spawns in either of the four corners.
The player now has a short time available to place each tag in the intended position,
before the train leaves the station.

5. When the train reaches the first player-placed track it slowly and continuously accel-
erates indefinitely. After a few seconds the spawned train station is removed from the
playing field.

6. Eventually the train reaches a trackless area and the game is concluded.

Train trax was chosen as the final game concept because all of the previously explained
criteria can be applied to it. However, it is not without its negatives sides as well. The most
notable problems with the chosen game concept are listed below:

• Complex implementation - The most complex element concerning the game concept
is undoubtedly the interaction in between the train and the tracks. Although the final
design only includes four separate track pieces, they each provide a slightly different
functionality. A relatively dynamic foundation must be built, upon which each of the
four different types of tracks can be implemented.

• Game concept too simple - Compared to the Whack-a-Mole game concept, this is,
in my opinion, far more advanced. However, the concept still lacks some elements to
give it more depth. The only goal in the game is to accumulate as many points as
humanly possible. Adding more goals would lead to a better player experience and
more interesting game play.
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Figure 12: A game played from start to finish. Reading the images from right to left
and top to bottom shows one game session in its entirety. Top-Left: The game starts with
the tags usually placed haphazardly. Top-Right: Three black tags which designate the play
area are placed in three separate corners to constrain and properly define it. Middle-Left:
A fourth black tag, which signals the players intention to start the game, is placed. After
five seconds within view of the camera, the game is started. A station, with the train on it,
spawns at a random location along the edge of the playing field. Middle-Right: The player
assembles the tags/tracks in their preferred fashion. The train leaves the station after a short
while. Bottom: The train eventually reaches a track-less area of the playing field and the
game ends.
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8 Combining Realities

This section reveals how all the previously explained theory comes together, in order to track
and visualize multiple virtual objects on different tags. To get a better understanding of
what’s been accomplished so far, we’ll quickly recap what has been achieved in section 6. We
have an algorithm capable of detecting potential tags in a given image as well the ability to
calculate where the camera is located, in relation to the tag, that has been detected. We
are close to being able to fuse the virtual reality together with the real one, but there are
still a few barriers left to over come. Until now, the virtual points (of a tag) first mentioned
in the beginning of section 6 have not been explicitly defined. They represent the virtual
counterparts to the points detected in an image and should represent the shape of the tag.
Thus, they must all lie on the same plane in a square formation. Theoretically, the points
can be place anywhere in the coordinate system, but an ideal choice is around the origin of
the coordinate system.

R e a l V i r t ua l

a b

Figure 13: Reality Vs. Virtuality. A single centered Tag. (a) A camera observing a
single tag in the real world. The coordinate axes are shown as a reference point. Obviously,
the real world has no actual coordinate system. (b) The resulting virtual reconstruction. The
virtual points are placed around the origin and the virtual cameras position and orientation
result in a similar situation compared to the real world.

Figure 13 shows a comparison between the camera in the real world and the estimated
camera in the virtual world. The tag is identified and the proper camera position and orien-
tation is calculated. The actual coordinates chosen in the virtual world determines the size
of the tag in relation to the virtual world coordinate system. I chose to make the tag unit
sized in the virtual worlds which restricts the coordinates of the four points to the following:0, 5

0, 5
1

−0, 5
0, 5
1

−0, 5
−0, 5

1

 0, 5
−0, 5

1


Figure 14 shows a situation similar to the one in Figure 13, but with an off-center tag.

The real camera has been moved slightly so that the tag is positioned in the lower part, of
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R e a l V i r t ua l

a b

Figure 14: Reality Vs. Virtuality. A single off-center Tag. (a) The Real world
situation. (b) The virtual counterpart to the real situation.

its field of view. The virtual camera is calculated to be positioned with a similar view of
the virtual tag. As the real camera is moved or rotated in any fashion, the virtual camera
will also be moved or rotated to the same position and orientation, as long as the tag is
within the field of view of the real camera. In the situation just described (and shown in
Figure 14), the tag remained static in both the real world and the virtual world. Only the
camera moved and was estimated to a different virtual location. At first glance this seems
reasonable, moving the real world camera causes the virtual camera to move as well. But this
approach (of always re-estimating the cameras position) also presents a conundrum. How can
we be certain that it is the camera that is moving and not the entire world? Using only a
single camera, we cannot be certain. Regardless of whether the entire world is moving in one
direction, or the camera is moving in the opposite, the situation will look exactly the same
to the camera. Because the camera, in this case, is only ”aware” of the tags it sees, moving
the tag back and forth accomplishes the same effect as moving the camera forth and back.
The pose estimation technique explained in section 6 always determines a new position and
orientation for the camera, in relation to the tag. In other words, it is always the camera that
moves and rotates to a new location in the virtual world. The virtual tag is always static,
and the camera is dynamic.

The situation becomes slightly more complicated as soon as an additional tag is introduced
into the scene. Previously, moving the virtual camera created a perfect match between the
virtual and real world. Unfortunately, given two tags, two separate camera positions and
orientations are produced. Figure 15 shows just such a situation. It is not surprising, given
that both virtual versions of the tags, are assumed to be located at the origin of the coordinate
system. In order for the virtual world to match with the real world, the two cameras must
be relocated to the same location and have the same orientation. One could argue that the
wisest approach would be to choose one camera to be static and relocate the other to its
position and orientation. This would save the trouble of relocating and reorienting two (or
more) cameras. However, neither of the two estimated cameras will ever be static as their
location and orientation will be re-estimated whenever the camera or the corresponding tag
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R e a l V i r t ua l

a b

Figure 15: Reality Vs. Virtuality. Two Tags. (a) The Real world situation. (b) The
virtual situation. A single virtual tag around the origo with two individual camera positions
and orientations. This is problematic since we would prefer to have a single camera position
and orientation with two individually positioned tags. This would allow us to render the
virtual world on to a single window containing a video feed of the real camera.

moves in the real world. This could cause issues if virtual objects were introduced that did
not depend on tags.

Instead, a fixed position and orientation is chosen and all camera positions are aligned
to that specific location and rotation. It is vital that the virtual tag is also translated and
rotated along with the corresponding camera, with the camera as its origin when rotating.
Figure 16 is a visualization of how this process works. In fig. 16(a) we see the same situation
as in Figure 15(b) except for the fact that there is now an additional (green) camera in the
virtual scene. This additional camera is the permanently fixed position and orientation into
which all other cameras will be translated and rotated. Figure 16(b) shows the first step in
the process, which is translating all existing cameras to the permanently fixed position. As
mentioned earlier, it is vital that the virtual tag each camera views is translated along with
it. Only then will the tags be placed at the final proper position and realistically integrate
with reality. The final step in the process is visualized in fig. 16(c). The two cameras are
rotated into alignment with the fixed camera. Now the two estimated cameras are exactly
aligned and will allow for multiple tags to be tracked using the same camera.

The tags in the real world and the virtual counterpart are now synchronized. However,
even though the virtual tags properly correspond to their individual camera estimations,
the virtual elements will not necessarily match up precisely with the real-world projection
from the camera. The reason is that the two cameras (real and virtual) do not necessarily
have the same intrinsic parameters. Even a slight difference in between the two cameras will
propagate and become clearly noticeable when visualizing the virtual objects on the tags in
the real world. Since its far easier to modify the properties of the virtual camera to fit those
of the real one, that is what we will do. Given the intrinsic parameters of the real camera, it
is possible to calculate the projection matrix as follows
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a b

c

Figure 16: Synchronizing all estimated cameras into one single position and ori-
entation. (a) A situation identical to the one in Figure 15. Two separate camera positions
and orientations have been estimated. The dotted camera with the green projection lines is
the static camera, to which the others must be translated and rotated. (b) Both cameras
have been translated to the static cameras position. Notice that the two tags are now placed
in a similar fashion to the real world in Figure 15. The projections match up nicely in this
particular example, so the final step could be skipped in this instance. However, this is hardly
likely to be the usual case, and an additional rotation is required, as shown in the next step.
(c) The cameras are rotated to all face the same direction which aligns all the projections in
the same direction. The cameras can now be treated as one, and all the tags are positioned
properly in relation to it.
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8.1 Pose Estimation Stabilization

The pose estimation techniques described up until this point, will yield an acceptable result.
The virtual objects will appear to be properly connected to the real tags that they match.
Without further modification however, the resulting pose may at times appear unstable,
especially if the tag in question is static. In such a situation the virtual object may appear
to jump and jitter. The image quality, from which the tag is identified and the pose is
estimated, also has a significant impact upon the visual result. In order to improve upon
the pose estimation, an averaging algorithm has been implemented which is described in this
section.

The overall goal of the algorithm is to improve the pose stability while keeping potential
artifacts to a minimum. The averaging of multiple erratic values is a common solution to ob-
taining a more stable one. An averaging window containing five poses showed positive results
and was chosen after initial testing. However, if the pose of a given tag is always averaged
the virtual object will appear to be lagging behind the real tag. In an extreme case this
could result in the user becoming uncertain of whether the two items are related. Therefore,
the computer must be aware of when a tag is in motion and update the corresponding pose
accordingly, without any averaging. In other words, the averaging should only take place if
the tag is fairly static.

Initially, the estimated position of the tag in the virtual world was used as an indicator,
for whether or not the tag in question had been relocated. Initial tests revealed that this value
was too unreliable to depend upon. If the tag was located close to the camera, the position
was estimated very accurately and fairly stable. But, if the tag was further away, the position
became much more unstable. A static threshold for determining if a tag had moved, would
yield poor results in either of the two situations. It is possible that a dynamic threshold,
dependent upon the distance of the tag from the camera, would yield acceptable results, but
a simpler approach was chosen instead. Testing showed that the image coordinates of the
tag yielded stable results within a few meters distance from the camera. Therefore, a static
threshold based on the euclidean distance between new and old point positions extrapolated
from the image, should provide acceptable results. Using the four points that make up the
outer board of the tag is ideal since they are readily available after the tag has been identified.
The next appropriate question is how many of the points should be used. A sufficient number
of points must be used to make sure, that it is impossible to rotate and/or move the tag,
and still obtain similar coordinates for every point. Figure 17 shows a number of visual
examples of how too few points can lead to improper poses. In Figure 17(a) only a single
image coordinate is chosen. Clearly, the tag can be rotated and oriented in multiple ways
without the coordinates of the chosen point changing. Figure 17(b) and (c) illustrates similar
problems with using two separate corners. The final example (Figure 17(d)) is the only
example where the coordinates of the corners is not exactly the same, in both poses. This
example is included because it shows how a completely different pose can be achieved with
relatively similar corner placement. In the left and right side of the example, the tag is facing
to the left and right respectively. However, in contrast to the other examples, these two poses
cannot be easily transitioned in between, without the computer taking notice of the change.

As a result, three individual points were chosen to determine if a tag remains stationary
or had recently moved. If the tag was stationary, the algorithm would average subsequent
poses. If the tag had recently moved the algorithm would discard any accumulated poses and
start anew.
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Figure 17: Four examples showing how different tag positions and rotations yield
the same positions for certain image coordinates. (a) A single image coordinate
is insufficient to evaluate if a tag has moved. (b) Two image coordinates prove equally
problematic. (c) Diagonally opposed corners do not solve the problem. (d) Even three
separate points can yield similar image coordinates for different tag poses.

For the benefit of the reader, the entire algorithm is described below in pseudo code:

1. Determine each of the three coordinates euclidean distance from averaged values of
previous coordinates respectively.

2. If the sum of the euclidean distance for all three coordinates is higher than 10, the tag
is determined to have moved and all previous averages are erased. The current value is
used as the first out of five values.

3. If the tag has not moved and less than five averages have been collected, add the image
coordinates, estimated pose, and estimated orientation to the average.

4. If more than five averages have been collected, discard the new pose and orientation.
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9 Implementation

Despite the name of this section, the concepts explained within it only occasionally refer
to the implementation specific details behind them. I believe the concepts are more easily
described if the technical details are kept to a minimum. The code implemented during the
thesis has been commented and contains a number of in-depth descriptions, if the curious
reader wishes to know the exact details behind a given concept.

9.1 Virtual Board

Most board games include some sort of surface or mat upon which play takes place. Hence
the term ”board game”. Likewise, most of the concepts described in Section 7 make use of a
virtual board in one way or another. For example, in Tower Defense a common playing field
is required for proper player and non-player elements to interact. Non-Player elements (such
as enemies) must traverse the playing field and the game must be able to determine if and
when a player has placed a tower tag within the field of play. Apart from being able to shoot
the enemies, the tower must also be partially static during gameplay. By partially static, I
mean that the player should not be allowed to constantly move a given tower within range of
the enemies. It should be placed once and only allowed to move if the players resources allow
it.

The only game concept which can easily do without a virtual board, is the Jigsaw Puzzle
game concept. In that game, it is irrelevant where exactly each puzzle piece is placed, since
every puzzle piece only relates to other puzzle pieces. If all of the puzzle pieces are assembled
correctly in relation to each other, their position and orientation are irrelevant. The game
concept Train Trax only uses a virtual board for the introduction of the train in the playing
area.

To create a virtual board, it is necessary to define a section of a plane to represent it.
Most board games use a rectangle shaped board to define the playing area. Since no accurate
assumption can be made regarding the players surroundings and how the camera will relate
to it, the player will be given the ability to define where the virtual board is located, and
roughly what shape it should be. Each side of the virtual board will automatically mirror
the opposite side of itself in length and angle. This allows for some very oddly shaped virtual
boards, and it is left up to the player to place them in an acceptable fashion. Since two sides
of the virtual board uniquely define its complete shape, it can be defined by three separate
points. These three points are represented by three separate tags. Placing these tags in-front
of the camera will define the position and shape of the virtual board. The three tags are
pre-determined to be either the upper-right, upper-left or lower-right corner of the rectangle.

Once the grid border has been determined, the problem of how it should be represented
internally arises. I decided that the chosen game concept was best served with a completely
dynamic structure, where the player was unburdened by a grid or similar structure. However,
a grid structure has been considered and implemented. In the final prototype it is only used to
place the train station at the very beginning. Necessary considerations and details regarding
this are explained in the following subsection.

9.1.1 Grid Structure

The simplest grid structure is comprised of equally sized square tiles. Square tiles would not
necessarily fit well inside a user defined grid border, so the tiles are defined to be the shape of
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the grid border. However, they are still all equally sized. A total of four different grid types
have been implemented and are described below. Note that the term ”tag-sized” only refers
to an area the size of a tag, not a shape.

• Manual Grid, Tiles are tag-sized - The number of tiles within the grid is pre-
determined, and the tiles are set to be unit sized, same as the tags.

• Manual Grid, Auto-sized Tiles - The number of tiles within the grid is pre-determined,
and the tiles are re-sized to fit the placement of the three border tags.

• Auto Grid, Tiles are tag-sized - The number of tiles within the grid is determined
by the amount of space within the user defined border. If there’s room for another row
or column of tag-sized tiles, it is automatically added.

• Auto Grid, Auto-sized Tiles - The number of tiles within the grid is determined by
the amount of space within the user defined border. The size of the tiles are guaranteed
to be at least unit sized. In other words, the amount of tiles along a row or column is
determined by how many whole tags can fit along it. This is the grid type used in the
prototype game.

Regardless of the grid type being used above, another issue remains to be dealt with. The
issue of converting between virtual world coordinates and virtual grid coordinates. In most
programs, grids are axis aligned. This saves complex computations when converting between
the different coordinate systems. This approach is not possible since the player is in control
of where the grid should be placed in the world. I have considered two different approaches
to the problem. Either apply a transformation to the grid and all of its contents so that it
becomes axis aligned, or separately determine the grid positions of elements, without affecting
the grid. I have chosen to focus on the latter approach.

Converting from grid coordinates to world coordinates is straight-forward. The upper-
left hand corner of the grid is defined to be it’s origo (0, 0). Two vectors spanning along
the x-axis and y-axis of the grid from the origo are known. Normalizing these two vectors
gives us V ecXW and V ecYW. The subscript W denotes that these two vectors are using
world coordinate values. Given these two vectors, the origo of the grid in world coordinates
(gOrigoW), and the grid coordinates to be converted (xG, yG), the following formula will
perform the conversion:

(xW, yW) = gOrigoW + (xG ∗ V ecXW, yG ∗ V ecYW)

The formula will yield the upper-left corner of the desired tile in the grid.
Converting coordinates from world to grid is slightly more complicated. One approach is

as follows: Create a vector (pointV ec) from the grid origo to the point in world coordinates.
Using the dot product, this vector can then be projected on to grid axis unit vectors and the
exact grid position determined. The following equation performs the conversion:

(xG, yG) =
(
pointV ecXW · V ecXW

V ecXW · V ecXW
,
pointV ecYW · V ecYW

V ecYW · V ecYW

)
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9.2 Train Algorithm & Track Design

Section 7.4 briefly mentions that a dynamic foundation must be built with which each of the
four different types of tracks can be implemented. This section describes the details behind
that track system, and how the train interacts with it to stay on track (pun intended).

A number of different track systems were considered before settling on the final imple-
mentation described below. The design was chosen due to its simplicity and relative ease of
implementation.

9.2.1 Track System

Each track consists of a set of track-connectors (also referred to as TCs from this point on).
These TCs describe how the track can be connected externally with other tracks, as well as
how a train is supposed to move when on it. Each track-connector contains the following
information:

• World position and Orientation - This information is required so that the track can
use this TC, to connect externally to other tracks. It is also required to place the train
correctly in relation to the track, if it happens to be moving on it.

• Next and previous TC - This allows each TC to be internally connected other TCs.
These two pointers only point to internal TCs, never to TCs on other tracks.

• Next or previous TC is an arc - This is essentially only used in the turn track. It
reveals if the train should make an arc-like transition between two TCs, or if it should
just commit to a straight line, which is the case, most of the time.

• Center of arc position and orientation - This information is only used if the train is
traversing an arc. In that case, this position signals the center of the rotation, allowing
for a radius of any size.

• Foreign TC - This information reveals if the TC is connected to a TC on a foreign
track.

• Score value - Details the net-worth of crossing this TC.

Whenever a track is determined to have been moved, it searches within a short radius of
its current location to find other foreign tracks. If foreign tracks are detected, each local TC
then iteratively searches to see if any foreign TCs are close enough to establish a connection.
If so, the connection is made, if not, any previous connections are removed.

9.2.2 Train Path Algorithm

Initially a number of fairly complex algorithms have been considered, able to find a complete
path from the track beneath the train to the final connected piece. Apart from the fact that
such algorithms pose a number of problems (for example, how to deal with a closed circuit),
they are far beyond what is actually required.

Essentially, the train can remain fairly ignorant of how the entire track looks and needs
only be aware of the track it is currently moving on and in rare cases a foreign track it is
connected to. The train path algorithm is explained step-by-step below:
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1. Based on the trains current speed, determine its distance to travel for the next frame
to be displayed.

2. As long as the distance traveled by the train exceeds the distance left on the current
track piece, skip train to next connected track piece. For each track skipped, deduct
the tracks entire distance from the distance left to travel for the train.

3. If the distance left to travel does not exceed the total distance of the local track, the
train must be placed somewhere along the current track.

4. For each TC on the current track, calculate the euclidean distance to the next TC. If
the distance left to travel is below this value, place the train in between them correctly.
If not, deduct the distance from the distance left to travel and move on to the next local
TC.

5. If the train ever needs to leave the current track, and there is no foreign track connected
to it, the train will stop and the game will end.

The above algorithm calculates the proper euclidean distance on tracks, weather they
are straight or contains arcs. It also prohibits the player from extending the trains path by
creating distances in-between tracks as the train will automatically jump from one track to the
next. If the tracks are properly aligned, the switch can be virtually undetectable. However,
if there is a significant gap, or the tracks are not properly aligned, the track will appear to
”warp” from one position to another.

9.3 Tag tracking algorithm

How each tag is detected in every frame has already been explained in Section 6.1. However,
the explanation in that section does not reveal how each tag is handled across multiple frames
and objects related to detected tags are updated.

Every virtual object that is to be attached to a tag, registers it and is afterwards auto-
matically synchronized to it every frame, with a given positional offset. Therefore, only one
virtual object can be attached to any given tag. Tags are detected by finding contours in
a binarized image, which are afterwards approximated to polygons. The detected contours
exist in a tree structure, which can help reduce the amount of computations needed by not
traversing the entire tree. For example, tags must at least contain an orientation mark which
itself should produce a contour. Thus, a leaf of the contour tree cannot be a tag since it
contains no contours. Initially, only the top three levels of the contour tree were analyzed
for potential tags. Unfortunately, if the light was placed in a specific manner, a number
of additional contours would arise around a potential tag, yielding the situation shown in
Figure 18.

Consequently, an extensive number of contours are now checked before assuming that no
more tags valid tags are detectable further down the tree.

After every tag has been detected, a final list comprised of all registered tags is checked,
and if a registered tag has been detected, it is updated with a new location and orientation.
If a registered tag has not been spotted in the past frame, it is also noted and eventually
marked as inactive, after a total of five frames. As detailed in Section 6.1.3, each tag is
uniquely identified every frame. In other words, a tags current location is determined by
examining each potential tags identification. Although the system only supports registering
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Figure 18: A perfectly detectable tag, enclosed in a number of contours. The first
contour surrounds the entire image. The second is around the (now white) piece of cardboard
the tag is placed upon. The third contour is the shadow surrounding the tag, and the fourth
and fifth contours surround the actual tag.

each identification once, it can detect several tags with the same identification. If multiple
tags with the same identification are detected, the last one to be detected is assumed to be
the ”correct” one.
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10 Program Description

The application developed during this thesis has been written in the standard C++ program-
ming language [Str] and uses the following external libraries and/or frameworks:

• Object-Oriented Graphics Rendering Engine (Ogre3D) [SWJ+] - Used as the
primary graphics engine in the application. In addition, Ogre3D provides a number
of tools and classes for working with objects in three dimensions, such as vectors and
quaternions.

• Open Computer Vision Library (OpenCV) [Con] - OpenCV is used to perform
a number of matrix and vector operations as well as edge/contour detection. Specific
details regarding which portions of OpenCV is used is detailed in Section 11.1. In
addition, OpenCV is also used to calculate a homography and as a comparison to the
pose estimation used in this thesis.

• Extremely Simple Capture (Escapi) [Kom] - Escapi provides a very simple and
straightforward API for initializing and using web-cameras via DirectShow [Mic]. The
original source (kindly provided by the author) has been modified slightly to enforce a
resolution output of 640× 480 pixels and a maximum of 30 frames per second.

• The Image Debugger (imdebug) [Bax] - A programmers utility designed to make
the debugging of windows applications, that use images, easier. The utility is executed
along side the main application and can be provided with images in a number of formats.

• Open Audio Library (OpenAL) [STC] - A cross-platform audio library. A frame-
work for using the OpenAL library is provided in their SDK which has been slightly
modified and used in this thesis.

• aStar Path-finding - A module written by Jonas Drewsen which provides a* path-
finding originally written for use in the Kryptonite Engine for SteamWinter [DBVL+].
The module was used in connection with the early stage development of the Tower
Defense game concept (described in section 7.1), which was subsequently abandoned.

• Simple Text Output (TextRenderer) [Aut] - A simple class created for the pur-
poses of producing simple on-screen text in the Ogre3D engine.

• Paul Nettle’s Memory Manager [Net] - A memory manager intended to reveal
potential memory leaks. Used sparingly in connection with the application and mostly
out of interest of the author.

The implementation of the application in this thesis has been written from the ground
up using Visual Studio 2008 Professional [Mic08]. Apart from the aforementioned libraries
and/or frameworks, a camera calibration toolbox [Bou] was used to estimate the intrinsic
parameters for two of the cameras used in the thesis.

Figure 19 shows a simplified UML diagram containing almost every class conceived for
the application. For exact relations between the different classes, consult the source code
provided on the supplemental DVD. Note that ”classes” ending with an extension (such as
.h or .cpp) refer to an actual file. As the diagram shows, the main function (contained in
main.cpp) creates an instance of the CamApp class which then sets up the Ogre3D engine,
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Figure 19: A simplified UML class diagram of the program implementation. The
diagram shows a nearly complete list of all classes developed for the application. A number
of omissions have been made in order to improve the diagrams clarity. Except for slight mod-
ifications to enhance output or improve integration with the main application, the external
libraries have not been altered or created for this thesis.
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DebugListener, SoundManager, AR2, and initializes the webcam before finally handing over
control to the GameStateManager class.

Each of the classes created by the CamApp class perform a number of steps necessary
prior to proper execution. The AR2 class creates its own private Tag2 object which it uses
continually to determine the ID of each individually detected tag. The AR2 class also creates
five instances of the TexImg class which handles the integration of textures between both
OpenCV and Ogre3D, providing a seamless interfaces.

Prior to entering the main game loop in the GameStateManager class, the TrainGameState
class creates the World class and the BufferedInputListener class. The World class is
intended to be a multi purpose entity handler and is also used in the (now irrelevant)
InGameState class. The BufferedInputListener class exists mainly for debugging pur-
poses. Aside from interpreting the ESC button as quit, it provides no functionality intended
to affect gameplay.

Once the main game loop is being executed by the GameStateManager class carries out
five crucial actions: Determining the amount of time passed since the previous execution,
capturing an image from the camera, evaluating the image for tags, updating the game state
and finally rendering the entire scene. These five actions are repeated indefinitely until the ap-
plication is finished. To evaluate the image received from the camera, the GameStateManager
class utilizes the AR2 class. The World class handles the actual updating of the game world
and every entity contained within as well as creating any necessary entities. It uses the
EntityFactory class for this purpose.

The observant reader will notice in Figure 19 that there is an inheritance hierarchy with
the Entity class at the very top. The Entity class provides a very basic set of functionality to
integrate it properly into the Ogre3D engine. It provides a few accessors and creates a personal
SceneNode which is one of Ogre3D’s classes for visualizing graphics. The EntityOnBoard and
EntityOnTag classes further specialize the entity to allow it to either seamlessly integrate with
the virtual board (EntityOnBoard) or with a specific tag (EntityOnTag). The only Entity
based class that does not rely on the virtual board or a tag, is the Train entity which
continually shifts its dependence from one tag, to another.

The latest version of the source code, in its entirety, is included on the supplemental DVD,
provided with the thesis. Additionally, a compiled binary of the code used during the user
play sessions is included on the DVD. The compiled binary is located in the following folder:
DVD/Source Code/bin/TestVersion/.
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11 Testing and Results

This Section describes the testing procedure for the developed prototype and how the following
two goals, set forth in this thesis, are fulfilled:

• Evaluate the robustness of the developed hybrid game system.

• Evaluate and analyze the users experience and interaction with the hybrid game.

To accommodate these goals, the robustness of the developed prototype is tested in two
parts. First, the pose estimation and related algorithms are subjected to quantitative and
qualitative tests. Note that only software implemented during the thesis, is considered, in
this part. Second, the entire prototype is subjected to a black box test. In addition to the
black box test, the prototype has been tested continuously during development. Significant
discoveries, made during development, and subsequent changes, have been mentioned where
relevant in the previous sections. The black box test is also performed in two separate stages.
First, a pilot test is performed with a player to gain valuable insight, before the actual black
box test proceeds. The pilot test is the last opportunity to discover and remedy any game
design related problems, or implementation bugs. Once the final adjustments to the program
and game design are complete, the second test portion can commence. A total of ten volunteer
players are asked to play the game, preferably five times each, at least. This final test with
ten players serves as both a more rigorous black box test of the implementation, as well as a
platform upon which the players experience and interaction is evaluated and analyzed.

During the development of the prototype, a total of three different cameras have been been
used. A W810i Sony Ericsson mobile phone camera [Eri], only used to obtain still photos
during the initial testing of the adaptive thresholding algorithm. The video feed provided
by the mobile phone is too poor in quality to be used for the live tracking of tags. The
second camera, Mini HiRes Webcam WB-3300p [Tru], was used during a large portion of
development and provides a video feed of sufficient quality, to test the functionality, of the
pose estimation algorithm. However, the camera was subjectively determined to be incapable
of providing a quality video feed, of a large enough play area, for acceptable pose estimation.
Figure 3 in Section 5.3.1 provides a comparison shot between this camera and its successor.
Each checkered square is approximately 3cm× 3cm in size, which means the area in view is
approximately 21cm × 17cm. This area would allow for a maximum of 4 × 3 tags which I
believe would lead to a poor game play experience. Although the camera is capable of a much
wider view, the blurring artifacts noticeable in Figure 3 only increase as the distance from
the playing area grows. Therefore, it was replaced with the Logitech QuickCam Pro 9000
[Log]. As opposed to the previously mentioned models, the Logitech QuickCam Pro 9000 has
a wide range of user adjustable features such as focus and exposure time. Without the ability
to control these parameters, a substantial amount of test results, are left in the hands of the
camera used to make them.

Ideally all cameras should be put through each of the upcoming testing scenarios to gain
insight into their fundamental differences and effects on the end result. Unfortunately, such
extensive testing is beyond the the scope of this thesis. Instead, a single camera will be chosen
and used primarily during every test. The Logitech QuickCam Pro 9000 has been chosen since
it provides manually adjustable settings, delivers the highest quality images, and potentially
yields the best gameplay experience.
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11.1 Internal Program Testing

This section details the evaluation of pose estimation and related algorithms. To get a better
overview, the complete pose estimation algorithm is described step-by-step in the list below.
Each step details the use of external software where appropriate.

1. Capture an image. - Uses a slightly modified Escapi library [Kom].

2. Correct image for radial distortion. - Implemented via OpenCV and is an optional
step in the algorithm.

3. Convert image to gray scale. - Implemented via OpenCV.

4. Binarize gray scale image. - Implemented from the ground up based on the algo-
rithm intended for use with the DigitalDesk [Wel93]. The new implementation relies
on shifting pointers rather than shifting indices. The algorithm uses slightly modified
parameters to better suit the needs of the prototype.

5. Detect contours and approximate polygons. - Implemented via OpenCV.

6. Apply filters to ensure only valid tags are detected. - Implemented from the
ground up with some isolated OpenCV functions.

7. Determine tag identification. - Implemented from the ground up.

8. Process all detected tags and update any registered by the prototype. -
This requires calculating a homography, estimating the cameras position and orienta-
tion from the homography, and aligning all estimated cameras and associated objects.
Implemented from the ground up, apart from the homography calculation which is per-
formed by OpenCV. Rotation and orientation calculations done in-part with Ogre3D
[SWJ+].

9. Average estimated poses. - Implemented from the ground up and is an optional
step in the algorithm.

As already noted in the previous section, only software implemented during the thesis is
considered for testing, as testing all of the nine steps individually would be beyond the scope
of this thesis. Therefore, steps 4, 6, 7, 8, and 9 are the main focus of the testing. The other
steps contain functionality provided almost exclusively be external libraries and are assumed
to function correctly. These steps will also be tested but only indirectly during the internal
tests, and again as apart of the whole prototype during the black box tests.

The nine steps can roughly be divided into two separate categories. Identifying a tag
and estimating that tags pose. Steps one through seven are considered to be in the category
”Identifying a tag” and the remaining steps eight and nine are in the other category. The
steps in the two categories are tested in the respective subsection below.

11.1.1 Tag Identification

The three main elements of the tag identification algorithm specifically written for this thesis
are: the adaptive binarization (step 4), the tag filtering process (step 6), and the proper tag
identification (step 7). In order to test the adaptive binarization, a qualitative analysis will

54



be performed where the prototype is subjected to a number of standard and extreme lighting
scenarios. Although the extreme scenarios are highly unlikely to ever occur in a real life
situation, their aim is to identify the limits of the adaptive binarization algorithm and the
related causes. The testing will focus on situations where the camera is placed in a position
intended for use in the developed prototype.

The tag filtering process is highly dependent on the results yielded by the adaptive bina-
rization and will consequently be tested along side it. Tag identification is likewise dependent
upon polygon yielded by the OpenCV library, which in turn is dependent upon the adaptive
binarization technique. Its results will also be derived from the testing process performed
with the adaptive binarization algorithm.

Whether or not a tag is identified correctly, can be determined by examining the visual
debugging information provided by the system. The system shows a potential tag by drawing
a blue border around it. If the tag is assumed to be an actual tag, additional information
is displayed: a green dot indicating the tags center, a red dot indicating the center of the
orientation mark, a blue dot indicating the tags primary corner, and nine small red dots
indicating the bit pattern location. By observing the nine red dots and one blue dot, it is
possible to confirm, if a tag is properly identified. If the blue dot is the first clockwise corner
from the tags orientation mark, the order of the tags corners is correct. This means that the
orientation of the nine red dots, used to read the tags identification, are properly oriented.
If each of the nine red dots are located within each respective bit of the tag, then the tags
identification will be determined correctly.

A total of 16 tags were placed in front of the camera at midday, sunset, and night. Within
these three time periods the tags were subjected to various light conditions, such as indirect
artificial light, direct artificial light and no artificial light. Additionally, the backgrounds were
varied between a contrasting piece of cardboard and textured table top. Certain test scenarios
were omitted due to overlap. For example, tests during midday, using no artificial light, and
using indirect artificial light, fall into the same category since the sunlight fully illuminates
the surroundings. All of the images from the test scenarios can be found in high quality on
the supplementary DVD, provided with the thesis.

Figure 20 shows six separate sequences of indirect lighting during the three time periods
on cardboard and regular table top. Out of the total of 96 tags in the six sequences, one
is improperly detected. The improper detection occurs at night settings on a table top (the
bottom sequence shown in Figure 20). The adaptive thresholding creates holes in the tag
border, resulting in an improperly detected orientation mark. The cause is most likely con-
trasting dark shadow cast by the light on the lamps foot. The shadow causes the binarization
threshold to assume the tag is partially background, leading to the artifacts shown in the
image. This issue does not occur when using the cardboard, because it provides a sufficiently
bright space in between the tag and the shadow. Note that in addition to the improperly
detected tag, a four cornered polygon is detected in the same sequence and properly discarded
due to the lack of an orientation mark. The same four cornered polygon is not detected in the
first night sequence (third from the top) since its contour merges with that of the cardboard
shadow. With the proper amount of indirect light, the different background appears to have
a minimal effect on the overall detectability of the tags.

As previously mentioned, the camera and tags are also subjected to a number of extreme
light scenarios. Although the tests were performed in all relevant time periods, only those
with significant or abnormal results are shown and described below.

Because the adaptive thresholding algorithm determines which pixels are foreground and
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Figure 20: Qualitative tests using indirect lighting. - From left to right, each row
represents the regular camera image, the detected contours and the resulting tag detection
image. The top and bottom three rows are, from top to bottom, midday, sunset, and night
respectively. 56



Figure 21: Qualitative tests in extreme situations. - The sequences are referred to from
1 to 6, top to bottom. The first four have been shot during midday, the fifth at sunset and
the sixth at night.
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background depending on the surroundings, a dark surrounding is likely to have a large
impact on other dark elements. The first sequence in Figure 21 is a clear indication of this.
Of the 16 tags in the image, only one is detected correctly, three are detected with an improper
orientation mark, and the remaining 12 are not detected at all. Note that one of the tags with
the improperly detected orientation mark, will still yield the correct identification and pose,
since the blue dot is located at the proper corner. The poor detection in the image stems from
the much darker color of the background, compared to the tags in the image. If the tags were
of an equally or darker color, their chances of being detected would be better. Introducing a
bright element which breaks the overall dark color of the image (such as a hand) results in a
much improved detection ratio (shown in the second sequence in Figure 21). However, some
tags are still improperly detected or undetected.

The third sequence in Figure 21 shows images shot at midday with the lowest exposure
and gain settings on the camera. The actual image is essentially black to the naked eye, and
consists of low RGB values spanning from zero to four. The contour image shows that even the
slightest difference in RGB values will yield a separation between foreground and background,
allowing for contours and consequently tags to be detected. Note that the poorer the signal
(in the image), the higher the prevalence of noise in it. But despite the noise, two tags are
still properly detected. In this type of light condition the success of a tag detection is almost
entirely dependent upon how the noise is distributed, and if it breaks up a border beyond
recognition.

Direct lighting onto the tags is shown in the fourth sequence in Figure 21. Direct lighting
was tested during all time periods on both surfaces and the results all similar. The high
concentration of light in one area, renders the directly illuminated tags unrecognizable, due
to the bright light reflected back into the camera. Nine tags are unaffected by the artifacts
created by the light, or have no artifacts at all. Although most of the tags outside of the
light are properly detected, other tests have shown that tags further from the light source
risk not being detected due low contrast caused by insufficient light. The sequence described
was shot during midday and was the second to most forgiving direct light scenario. The scene
most capable of handling indirect light, is during midday using the cardboard back. The
cardboard back is a very matte surface and does not reflect light as brightly as the table top,
and therefore causes less improper detection. Direct light at night creates an even stronger
contrast in the image, rendering very few tags detectable.

The fifth sequence in Figure 21 is during sunset with half of the playing area in shadow and
half in sunlight. As expected, the sharp contrast causes a few artifacts during thresholding.
One tag out of the 16 is improperly detected, resulting in a reversed pose and incorrect
identification.

The sixth, and final, sequence in Figure 21 shows images from night time, with poor
lighting creating a gradual transition from dark to light across them. For a number of tags,
the thresholding algorithm fails to create a proper outline, resulting in an undetected tag.
However, the algorithm is capable of properly thresholding four tags which I can barely see
on the image. This sequence is the only one to show a tag detection, where none is present.
For reasons beyond me, OpenCV concludes that the oddly shaped blob on the top right
is a square. The the tag filters detect a likely orientation mark, and calculate the ”tag”’s
identification. Fortunately, the resulting identification would not have matched with any of
the tags in view of the camera, so in practice, this misdetection would not affect the program.

The thresholding algorithm performs well in evenly lit or evenly low-light situations, but is
susceptible to a number of elements. Non-contrasting backgrounds, direct light and complete
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image light gradients can all lead to undetected tags because of the adaptive thresholding
algorithm. Using darker tag colors would assist the algorithm in differentiating the tags from
the background, and therefore improve detection. The thresholding algorithm only takes
a part of the image into consideration before evaluating if a pixel should be considered as
background or foreground. By pre-processing the image to detect uneven light distribution,
the algorithm could be improved. However, pre-processing an image every frame can be
a costly procedure, computational wise. An alternative would be to fine tune the adaptive
thresholding parameters mentioned in Section 6.1. A thorough quantitative test over a number
scenarios with different parameters would likely help optimize them to best suit tag detection.
However, I believe that very high or low contrasting images, such as dark backgrounds or direct
light, may still cause artifacts.

The tag filtering process detects all tags in the squares discovered by the OpenCV library,
including a single false positive. Because the tag filtering process does not discriminate
between properly positioned orientation marks, it is no surprise that in certain occasions
an artifact is detected as the orientation mark. By also forcing the orientation mark to be
estimated to a square polygon or examining its position within the tag, such errors could
be reduced. Note that polygon approximations of artifacts within tags, are often so small,
that they will on a number of occasions also be estimated as squares. Given the few amount
of non-tag squares detected by OpenCV, the filtering process warrants further testing in a
non-game setting to further study its performance. Due to time constraints, this is beyond
the scope of this thesis. In most of the tested instances, a properly detected and filtered tag
lead to the proper identification of it. Only an improperly detected orientation mark shifted
the bit order, yielding a false ID. The more rigorous orientation mark filtering mentioned
above would help ensure that identification is properly determined every time.

Clearly, the thresholding algorithm should be a priority in further study, as proper filtering
and tag orientation is irrelevant as long as the outline of the tag is not discovered.

11.1.2 Pose Estimation

This section describes how the pose estimation algorithm for this thesis has been tested. The
pose estimation has been subjected to a quantitative comparison with the pose estimation
provided by the OpenCV library. The comparison will provide a performance perspective
between the two algorithms.

Determining the accuracy of an estimated pose is a complex task. I have considered
two different approaches to measuring the accuracy of the pose estimation algorithm. The
first is the conceptually most straight forward. It relies on the tried and tested method, of
individually measuring each tags orientation and position, in relation to the camera, in both
the real and virtual world. In the virtual world, these measurements can be performed quickly,
with relative accuracy, and multiple times. In the real world however, the measurements are
only as good as the tools used to measure them. In addition to being a very time consuming
process, I doubt the accuracy of the measurements I would be able to achieve, given the
current set of resources.

Instead, I have opted for a method which estimates results based on a known relation in
between tags. A total of 16 tags have been placed on a flat surface (table top) from which a
plane is estimated in the virtual world. Specifically, each of the 16 tags positions and poses are
estimated, the values are averaged together, and a single plane is determined. The position
and orientation of each tag is then individually compared, to this averaged plane, to measure
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its deviation. A tags position is tested by determining the shortest distance between its
position, and the averaged plane. Recall that one virtual world unit is equal to 5 centimeters
in the real world. A tags orientation is tested by comparing its surface normal with that of
the plane. The difference between the two normals is measured in degrees.

The pose estimation algorithm, detailed at the beginning of Section 11.1, contains two
optional steps. Both the tags position and orientation has been tested with and without these
steps, to see how they affect the overall accuracy.

In addition to testing on the table top, each measurement has also been performed on
the piece of cardboard used during the user tests. Figure 22 shows the tags placement within
the view of the camera. The blue tags have intentionally been positioned in the middle of
the shot, to measure differences between centered tags, and those along the image border. In
each test the surface was placed approximately 41 cm from the camera.

Figure 22: Tag placement on two different surfaces. The left image shows tag placement
on the cardboard piece used during the game tests. The right image shows a similar tag
placement, but on a table top surface. In both images the decimal value of each tag ID has
been imposed to easily correlate its position and subsequent measurements in the following
figures.

In each of the four figures displaying the results of the measurements, the x-axis is to be
interpreted as an indicator for which test being performed. The following table shows which
testing scenario relates to which x-coordinate:

X-Coordinate Pose Algorithm Pose Stabilization Radial distortion compensation
1 OpenCV OFF ON
2 OpenCV OFF OFF
3 OpenCV ON ON
4 OpenCV ON OFF
5 Thesis OFF ON
6 Thesis OFF OFF
7 Thesis ON ON
8 Thesis ON OFF

Note that the tags have been slightly spread out along the x-axis to make the individual

60



tag measurement and variance easier to read.
For each of the eight tests shown in the four figures, a total of ten measurements were

performed. These measurements have been averaged to a single value for each tag, including
the maximum variance of the respective measurement. In all four figures, smaller values are
better results. Perfectly estimated poses would show a distance and normal variation of close
to zero centimeters and degrees respectively.

Figure 23: Table-Top Position Comparison. Green markers indicate centered tags. Red
and purple markers indicate border tags. One unit on the y-axis equals 5 cm.

Figure 23 shows the eight positional test scenarios on the table top with 16 tags. It is
immediately clear that the OpenCV pose estimation is superior in all four cases, with both a
closer averaged position, and less overall variance. The tag causing the most variance using
both the OpenCV and thesis pose estimation is nr. 12 with ID 38. It’s worst measurement
is 8 cm from the surface of the plane. The middle tags (shown in green) are in general closer
to the plane than the border counterparts. Since the average position of the plane will lie
among the center tags, this result is to be expected. The radial distortion compensation
appears to worsen the overall results of the OpenCV algorithm, showing a higher variance in
both situations where it is used. When using the thesis developed pose estimation algorithm,
it actually appears to have a positive effect in the first of its four tests. Comparing the 4
situations where pose stabilization is on or off using both algorithms, the difference appears
to be negligible. Considering that the tests already contain ten separate measurements, its
not especially surprising, that the additional five, for each tag, make little difference. The
best scenario showing the least deviation is the fourth.

Figure 24 shows the eight positional test scenarios on the cardboard piece with 16 tags.
The most notable difference is that four last tests, most tags have a considerable variance,
when compared to the last four table top scenarios. However, the few tags that caused extreme
variance in the table top scenarios no longer deviate as much. Except for tag nr. 12 with
ID 38, the OpenCV measurements are similar to the ones using the table top. It seems that,
with the cardboard piece, the radial distortion compensation improves the pose estimation
when using the OpenCV library, but mainly for tag nr. 12 with ID 38. However, it appears
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Figure 24: Cardboard Position Comparison. Green markers indicate centered tags. Red
and purple markers indicate border tags. One unit on the y-axis equals 5 cm.

to have the opposite effect when using the thesis developed algorithm. The best scenario,
with the least deviation, is either the first or third case.

Figure 25 shows the eight directional test scenarios on the table top with 16 tags. As with
the positional measurements, the OpenCV pose estimation algorithm is more accurate. It’s
interesting to note that the tags with the most deviation, using the OpenCV algorithm, are
the the ones in the center. This is something I also noticed during development of the thesis.
Having the tag face the camera directly, often resulted in a jittery poses, rarely facing the
camera directly. Using the thesis developed pose estimation, the center tags appear to deviate
less than the border ones. The four tests with OpenCV library and thesis implementation
each show an improving tendency towards the right. It appears that the best results are
achieved using pose stabilization, and without radial distortion compensation. Although the
last two tests using the thesis developed pose estimation appear to have tags deviating about
the same amount. As with the positions estimated on the table top, the best scenario is the
fourth one, using OpenCV using pose stabilization and no radial distortion compensation.

Figure 26 shows the eight directional test scenarios on the cardboard piece with 16 tags.
In general, the eight scenarios appear to suffer from more deviation than in the table top tests.
On the table top, the OpenCV algorithm had a maximum deviation of 8 degrees for a tag.
Here it is approximately 13 degrees. On the table top, the thesis developed algorithm had
a maximum deviation of 12 degrees for a tag. Here it is close to 15 degrees. Otherwise, the
figure shows the similar improving tendency towards the right, as in the previous figure. Also
similar to the previous figure, the OpenCV algorithm is more accurate overall, with the fourth
being the best one. Measurements from the thesis developed pose estimation algorithm, show
that most tags seem to deviate around 7-8 degrees, on the cardboard piece. On the table top,
the degrees of deviation per tag is less centralized.

Taking all eight scenarios from all four figures into consideration, it is clear that the algo-
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Figure 25: Table-Top Normal Comparison. Green markers indicate centered tags. Red
and purple markers indicate border tags. One unit on the y-axis equals 1 degree of deviation.

rithm provided in the OpenCV library is the most accurate. A close analysis of the OpenCV
source code reveals that the thesis developed algorithm is similar to the OpenCV in all aspects
but one: Data normalization. Hartley and Zisserman [HZ04] show that data normalization
significantly improve the calculated homography, when using direct linear transformation
(explained in Section 6.2). Due to time constraints, data normalization has not been im-
plemented in the algorithm developed for the thesis. I was surprised to find that in most
cases the radial distortion compensation appeared to worsen the resulting pose, especially
because the radial distortion, caused by the Logitech QuickCam Pro 9000, is minimal. This
result could be caused by poor camera calibration. However, the calibration process includes
a sample of no less than 20 different images which I would speculate yields fairly accurate
results. Given more time, it could be interesting to perform the same tests using a camera
suffering from severe image distortion and measure whether or not compensation improves
the estimated poses. Section 11.4 details future improvements to the testing process.

11.2 User Test

This Section describes the black box testing of the complete prototype as well as the evaluation
of the users experience and interaction with the game.

Preferably, all user testing should proceed in environment that the player is accustomed
to [Mol94]. The equipment required to perform the testing is unfortunately too unwieldy,
to carry in person, to one more more locations. Therefore, the testing was performed at an
unfamiliar location, where every effort was made to put the player at ease. The testing setup,
which was located inside a residential apartment, can be seen in Figure 27.

The testing setup was comprised of: one computer, one screen, a set of speakers, a camera,
a microphone, and a IKEA-lamp (bought expressly for the purposes of this thesis, as a ”camera
holder”). The testing was concluded within eight days and the tests were performed between
the hours of 09:00 and 17:00 to ensure the best possible lighting. The cardboard back was
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Figure 26: Cardboard Normal Comparison. Green markers indicate centered tags. Red
and purple markers indicate border tags. One unit on the y-axis equals 1 degree of deviation.

used during user tests, as proper tag detection was deemed to be of high importance.
Prior to actual testing, a pilot test should be conducted in order to avoid any severe

problems during the actual test [Mol94]. If a pilot test reveals too many problems, then an
additional pilot test should be performed, after they have been remedied. A total of three
pilot tests were performed prior to the first user test. The findings and corrections of the
pilot tests are listed below:

• Unreliable track connections - A number of issues persisted with inter-track con-
nections. Initially, tracks would only search for external tracks to connect to, if this
was deemed necessary. This necessity mainly depended upon whether or not it, or
other tracks, had been relocated. This approach resulted in unpredictable behavior,
and was altered so that a track would continuously probe for surrounding tracks. Fur-
ther complications arose due to these alterations, in connection with undetected tags.
An undetected tag (and its virtual object), would always be removed from the playing
area and subsequently disconnected from all surrounding tracks. Changes were made
so that virtual objects belonging to undetected tags are never removed, only rendered
invisible.

• Train properties - The speed and acceleration of the train were tweaked to better fit
novice players. The initial speed was lowered and the acceleration increased.

• Pose Stabilization - The stabilization algorithm described in Section 8.1 proved prob-
lematic. Given an unfortunate circumstance, the pose estimation algorithm would some-
times estimate a very poor pose for a tag. Although four subsequent estimations are
averaged into the equation, the original pose may be so poor that the end result, of
the five averaged poses, would still be far from the correct pose. Since the averaging
algorithm only re-estimated a pose after a tag had been moved sufficiently, the problem
would never subside regardless of how long the prototype would recognize the tag. To
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Figure 27: Testing area. - A cozy testing facility, complete with IKEA-lamp (using a
Halogen bulb GY6.35 12V 50W). The IKEA lamp was used exclusively as a camera holder
during user testing, and was never lit during user testing. In rare occasions, suffering from
poor lighting due to cloudy skies, the lamp seen to the far right (using a standard 60W light
bulb), was pointed towards the wall and turned on. This provided an adequate source of
indirect light.

resolve the problem the averaging algorithm was modified to continuously update its
averaging values.

11.2.1 User Test Procedure

The testing procedure used to test the developed prototype game, uses the ”think-aloud”
protocol where players are encouraged to voice their thoughts and opinions, during interaction
with the application in question. This method of testing allows for a direct relation between
application based events and associated user reactions. To get further feedback regarding the
users experience, an interview is conducted with the player after the play session.

The developed prototype is intended for casual gamers. Ten players between the ages of
24 and 36 were chosen to participate. Prior to the actual test, each participant was informed
by e-mail how the testing would proceed to minimize any anxiety they might have, in regards
to the test. Once the participant arrived, the testing would proceed in the following fashion:

1. Greeting - The participant is greeted and thanked for participating in the test. She
is asked if she is willing to be recorded during the testing procedure to improve data
gathering. The participant is explained that it is the developed prototype that is to be
tested, not the participant, and the entire procedure is explained in brief terms.

2. Game Rules - The prototype game and related rules are explained to the participant.
Details regarding actual interaction methods are intentionally avoided. The player is
made aware that she must obtain as many points as possible, by keeping the train
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moving along train tracks. Each existing track is briefly explained and an association
of ”difficult tracks equals more points” is made clear.

3. Game Prelude - The participant is asked to relocated to the game area and is briefly
explained which tags are merely present for functional use, and do not affect gameplay.
The participant is asked to think out loud when playing the game and ask any questions
they might have.

4. Gameplay - The participant plays the game a minimum of five times during which
play and audio is recorded.

5. Wrap-up - The participant is asked a series of questions regarding the game and their
experience, and finally thanked for their participation as the session is concluded.

Audio and video was recorded for each individual play session, and has been included on
the supplemental DVD in a compressed format. Audio from each interview was also recorded,
and has also been included on the supplemental DVD. An English translation of the questions
used to guide the interview is provided in Appendix A. The original set of guideline questions
are also included on the supplemental DVD.

The questions are aimed at getting an insight into the players perspective of the tactile
interface and what issues it raised during gameplay. Certain questions are intentionally open
and slightly vague to allow a broad interpretation and not limit the players initial response.
In a similar effort, a few of the questions are repeated but phrased differently in order to gain
as much knowledge regarding the subject as possible.

The results of the user tests have been divided up into two subsections. First, results
relating to the black box testing of the program. This includes program instability, bugs or
other implementation related issues. Second, results from user interaction and subsequent
interview regarding their experience.

11.2.2 Black box Results

During the play-testing session, the prototype was played a total of 73 times. Each time the
game session ended, the cause was recorded along with other statistics. Figure 28 shows all
of the recorded sessions and the observed cause of their conclusion. Out of the 73 times the
game was played, the session ended 25 times due to unwanted program behavior, 34 times
due to the players behavior, and 13 times somewhere in between the two (designated gray
area). Player behavior caused conclusions (or player ”error”), involves a situation where the
train ran out of tracks follow. Either due to a tag being placed too late, a tag being placed in
time but facing the wrong way, or a tag being placed to far from the adjoining tag. Situations
determined to be gray areas are one of the following: Train not properly transferring from
one track to another while tags are in motion (pushed by player), or a tag being placed but
never spotted by the camera, due to the player obscuring its view. Program ”error” are
situations where the train failed to transfer properly in between two properly placed static
tags, or situations where one tag was improperly detected as another.

Out of the 25 times the game was concluded due to unwanted program behavior, 22 of
them occurred when a train was switching in between two static tags, placed properly in
relation to each other. The fact that they are placed properly next to each other is based on
subjective observation, and therefore open for potential bias. However, the observations have

66



Figure 28: Cause of game over and time statistics for unwanted program behavior.
- Shown left are the recorded game conclusions. Shown right are the times for all the game
sessions which ended due to unwanted program behavior.

been checked several times and are in agreement with the respective players observation.
The exact reason behind the improper transfer, of the train, from one track to another is
unknown. Therefore, Figure 28 also shows a time distribution of these errors, for each player,
in an attempt to recognize a pattern. Apart from the fact that most of the problems occur
prior to 100 seconds, there appears to be no discernible pattern. Since this specific problem
always occurs during the transfer of the train from one track to another, it is reasonable that
given more time, more track transfers take place. The larger the amount of track transfers,
the more chances for the problem to occur. The observant reader will note that player 4
experienced the most of these problems than any other player. No significantly different style
of play was observed for that player, and I believe this is merely a coincidence. Based on the
distribution shown in Figure 28, as well as the deviations measured in the prior sections, I
assume that the unwanted behavior can be attributed to the pose estimation. If both tags,
in between which the train is traveling, are estimated poorly, the tracks will fail to connect
properly, leading to the observed problem.

The other unwanted behavior occurred a total of three times where one tag was mistaken
for another. In every observed instance, this happened while the player was either moving
or obscuring the tag in question. This, I believe, is also the cause to the misdetection. By
performing a double check before accepting a tag is ”detected”, this behavior could be avoided.

Out of the 13 game conclusions in the gray area, 5 of them were due to a tag not being
discovered after its relocation, due to the player obscuring it. This problem is not easily
compensated for. Using the current detection algorithm even the slightest obscuring of the
tag will often cause it not to be detected. A different algorithm is considered in Section 11.4
which could minimize the problem. How to properly handle issues caused by tags in motion
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is less clear. Often multiple tags were moved by the player and preferably they should either
all be detected, or all not be detected. Only detecting some of the tags could lead to track
disconnections and cause an unexpected end to the game. Determining which of the tags
in view are being moved along side others is no simple task and, if possible, would require
advanced computer vision techniques.

The black box test clearly shows that the prototype exhibits some unwanted behavior. I
believe most significant issues would be resolved by improving the pose estimation (by using
data normalization for example), and verifying a tags existence before updating its position.
Section 11.4 further elaborate on possible improvements. An unexpected conclusion to the
game session is detrimental to the players experience. Resolving this program issue should
prioritized in future work. Fortunately, out of the 73 game sessions, 34 ended exclusively due
to the players behavior, providing ample data to analyze.

11.2.3 User Interaction and Experience Results

As previously described, the game sessions consisted of both a play portion and an interview
portion. The following is a qualitative analysis of the observations made during the game
sessions, as well as thoughts verbalized by the players during play, and their answers given
during the interview. All of the recorded game sessions and interviews were analyzed and
transcribed into a compact format after completion. The transcriptions have been evaluated
and the most notable and reoccurring elements are detailed in this section. Videos of the
game sessions and audio from the interviews are available on the supplementary DVD, in
their entirety.

I have attempted to divide the input and behavior from players into two groups: during
play and post-play (interview). Only where I found it necessary, are results from both in-
tertwined due to a direct connection. The list below details the most notable observations
and comments made, during the play session. Note that in the remainder of this chapter the
word ”tag” is interchangeable with the word ”game piece”. This is because players rarely
refer to the tags as tags, but rather as game piece, which is a reference to both the tag and
the cardboard base it is affixed to.

• Quick familiarity - The players were purposefully left in the dark, in regards to how
the tags were related to tracks, and how their placement affected the game. Regardless,
all players were able to assemble multiple tracks in their first attempt. Nine out of ten
players also relocated tracks, that the train had already passed, in their first game ses-
sion. I believe that this observation is an indication that players are quick to familiarize
themselves with this kind of tactile interface. The word ”indication” is purposefully
chosen since a number of unmeasured factors can affect this player behavior, such as:
previous gaming experience, general computer skills, or interest towards the prototype
being tested.

• Difference in focus - Some players were observed to constantly shift focus between the
screen and the playing area in-front of them. These players appeared to use the screen
mainly as a temporary source of information, for the current train location and track
placement. Other players began their session using the same approach, but eventually
started focusing exclusively on the screen as a constant source of information, rarely
looking directly at the tags in front of them. One player even commented, that he
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did not notice one tag had been placed slightly on top of another, due to him focusing
exclusively on the screen, and its top-down view.

• Disappearing tracks - Most players commented negatively, during their gaming ses-
sions, on the fact that tracks disappeared, when the tags they were related to, were
obscured. I believe that the players handled each tag as they would any other board
game related element, which led to them being obscured from the cameras view. The
tags were purposefully placed on 1 cm thick cardboard-like pieces for easier handling,
but picking the tags up and not obscuring them is unwieldy and requires additional
effort. Since the players were focused on playing the game, it is not surprising that the
tracks were almost always obscured when picked up.

• Real and Virtual World Separation - All players appeared to instantly relate to
train tracks being affixed to individual tags. However, every player that (usually acci-
dentally) moved the train track carrying the train, was surprised to find that the train
moved along with the track. I find this particularly interesting because in the real world,
moving a train track with a train on it, would also move the train. A cause and effect
scenario I believe most people would agree on. I believe the surprise that the players
experience, is partially due to a distinction present in their mind, as to what is ”real”
and what is ”virtual”. The train tracks are affixed to real objects and therefore step
closer to the ”real” domain, than the train which appears out of no where, and cannot
be physically interacted with.

• Conceived grid in playing area - On two separate occasions I noticed that players
would place tags in a grid-like formation close to one of the three black tags. On both
of these occasions, the game had just begun and the train station had spawned close
to one of the three black tags. I think this is interesting because it indicates a reliance
on real-world items, in an effort to satisfy a virtual goal. In other words, I believe
that the black marker was temporarily seen as having a relation to the spawn point
and therefore used as an anchor to coordinate the placement of the first train track.
In both occasions the players eventually reevaluated the tags placement on-screen, and
corrected the placement of the first tag. One player also explicitly commented in the
interview, that it would make sense if the black tags were more directly related to the
train station from which the train departs.

• Additional feedback - A number of players suggested additional visual and audial
feedback during gameplay to help the player better interact with the game. For example,
visual feedback showing whether or not tracks have been connected, or auditive feedback
for when the train leaves the station.

• Inner Workings - Although the goal of the game was to achieve a high score by
perpetually keeping the train moving, a few players started testing the prototypes limits
after a few game sessions. Although this indicates an abundance of player interest
towards the inner workings of the prototype, it is also a sign that the game concept had
very limited appeal to these players.

• Lack of clarity regarding the regular train crossing - I was quite surprised that
the regular train crossing caused some confusion for a few players. Prior to using the
track the first time, a number of players were unsure as to how the train would react
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when traveling across it. Most pondered whether or not it might stray to either sides
instead of always going straight.

In addition to the observations and comments above, a number of players also expressed
having fun while playing the game. Although this serves no specific purpose in relation to
this thesis, it is encouraging to note nonetheless.

The list below details the most notable observations and comments during the interviews:

• Tracks disappear when tags are occluded - The absolute number one concern of all
players, is the fact that train tracks disappear when the related tag is occluded. Every
single player commented negatively on this particular issue, and most of them suggested
that the tag itself should indicate what kind of track it represents. A few players also
voiced concerns that the game might become too simple if one could tell what a tag
represented by just looking at it. One player noted that the problem, was compounded
by the fact, that the disappearing of tracks often happened, when the situation was
most dire. The player referred to a situation where the train is almost out of tracks to
run on, and the player has the least time to orient himself, regarding which tracks are
where. In such a situation the need for clarity is highest, but so is quickly relocating
the tags. I find this point especially interesting since it shows how the game mechanics
are partially at odds with this kind of tactile interface. Constantly relocating tags also
means that at least one train track is invisible, most of the time.

• Game logic - Overall, most players noted both during the play session and in the
interview that the game was intuitive and the tags relation to the tracks logically fit.
Players also noted elements which were less straight-forward:

– First Tag - Placing the very first tag in relation to the train station from which
the train departs proved difficult. This problem was also directly observed during
game play a few times.

– Inter-track Train Transfer - The immediate switch (”warping”) of the train,
between two tracks, gave some players an unnatural feel of the game.

– Train moves along with the track that it is on - Just as observed during
the play session, a player noted that this behavior was unexpected. The same
player also added that he preferred this behavior, as opposed to the train losing
its connection to the track, effectively ending the game.

– Game Start Timer - A player commented on the timer sequence used to start
the game. He explained that it was initially unclear as to whether the first five
second count down signaled the trains departure (although the train is not visible
at that point in the game). The same player also suggested replacing the timed
train departure with a trigger system. Placing a tag in front of the train, should
automatically trigger the system to begin.

– Scoring System - How the score was affected by the use of each track piece was
unclear to some players.

– Lacking Goal - One player felt the lack of additional goals, made the game less
logical.

– Black Tags - A player voiced confusion regarding the black tags, and their relation
to the game.
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• Tactile interface as part of the game - Most players noted that they perceived the
tags as being an integral part of the game. Any difficulty experienced with moving and
coordinating tags was often attributed to being a part of the games challenge. A few
players noted that they appreciated this type of interface, as opposed to alternatives,
such as a mouse or keyboard. One player explained that the greatest strength of the
interface was controlling the rotation of an object. He personally found this extremely
intuitive compared to alternatives provided by other types of interfaces (using the mouse
or keyboard).

• Proposed changes - When asked, the players suggested a number of changes. I have
limited the suggestions here to those most relevant to the interaction and game concept:

– Playing area - The cardboard piece troubled a few players who accidentally
moved it during game sessions. Restraining the cardboard was suggested to avoid
these issues. Most players felt that the play area was too small. One noted the
contrary. The cardboard was used during user tests, because initial testing showed
it provided the best backdrop for detecting tags (which was deemed a high priority).
The results yielded in Section 11.1.1 suggest that tags would have been almost
equally detectable upon a table top surface. Using the table top would open up
for a larger and static play area.

– Game pieces - A number of players felt that the weight of the game pieces (to
which the tags are affixed) were to light and flimsy. One player felt that they had
just the right weight.

– More feedback - Every player commented on the in-game feedback. Most players
would have appreciated additional visual feedback (especially in regards to tracks
connecting properly) and additional audial feedback.

• Multiple areas of focus - Reactions to the multiple areas of focus (playing area and
screen) were mixed. Some players appreciated the challenged it presented. One player
explicitly denounced the aspect and saw it as a general annoyance. Most players agreed
that limiting the areas of focus to one location would simplify the game, but some
players were concerned that this might make the game less interesting due to a lack of
challenge. An especially interesting comment came from a player, who had played the
prototype under less than ideal light conditions, due to cloudy skies. He noted that the
lag produced from the extended exposure time of the camera, made it frustrating to
focus on the screen. Especially due to his own hands being delayed on-screen.

• Tag Colors - When asked if players noticed the difference of colors between the tags,
most players responded positively. A few also explained that they used the blue colored
tags as anchor points between the placement of tags in-front of them, and how the same
situation looked on-screen.

Apart from a few notable exceptions, the results obtained from the interview indicate that
players had no trouble using the tactile interface, or figuring out how to affect the game in the
way they intended. The notable exceptions include players not being able to see train tracks
on obscured tags and a lack of additional feedback. I believe that need for feedback would
have been less commented upon, if the train did not fail to transfer on occasion. Resolving this

71



issue and further testing would prove useful in this case. The problem of players being unable
to see train tracks, on obscured tags, can be approached in a number of ways. The easiest,
and most often suggested, solution would be to indicate the type of track on the actual tag.
However, one of the game mechanics was that the train tracks remained indiscernible until
play started. An alternative approach would be to alter the tags physical shape to encourage
players not to obscure the tag. Yet another approach would be to use a more robust detection
algorithm, allowing the tag to be partially obscured. One such algorithm is briefly discussed
in Section 11.4.

I believe that some of the responses from players can be partially attributed to previous
lack of experience with the interface. For example, a number of players noted preferring the
tactile interface to a mouse or keyboard. However, they might not feel the same way, if they
have had to use the interface for an extended period of time, or in a completely different
application.

The answers gathered in this section provide valuable insight into the concerns and prob-
lems users may experience with this type of interface. I believe it can serve as a foundation
upon which a thorough set of user testing could be performed.

11.3 Informal product comparison

In addition to the internal and external testing of the developed prototype, a proprietary
commercial product was also tested. The goal was to investigate if it also suffered from
some of the issues discovered in the developed prototype. The product in question is the
aforementioned Eye Of Judgment [Wikd], released exclusively for the PlayStation 3. Due
to the commercial nature of the product, access to the product was restricted to a users
perspective. Therefore, the product could only be evaluated externally and conclusions only
based on observed behavior. The game setup and an associated playing card is shown in
Figure 29.

The testing focused on light sensitivity, detection sensitivity and an overall impression of
the pose estimation. The list below details all significant discoveries made while testing the
Eye of Judgment:

• Detection pattern sensitivity - Imperative testing leads me to believe that the
identification pattern on the Eye of Judgment playing cards consist of the black patterns
on the top and bottom of the playing card, as well as the four arrows in the middle. Note
that ”patterns” refers to the shape of the black bars, and not the actual markings inside
them. I believe the markings are there for purely aesthetic purposes. The continuous,
and thickest, black bar at the top of the card is most likely the guide bar mentioned
by Rekimoto and Ayatsuka [RA00], used to detect a potential playing card. Each card
has the exact same thick bar at the top, while the smaller black markings vary on each
card, and is probably the identification pattern.

Similar to the prototype developed for this thesis, occluding any of the aforementioned
card markings slightly, prohibit the card from being detected. This includes both the
various black markers, as well as any of the arrows. In contrast to the prototype, the
card offers a fairly large surface, which is not involved in the detection and can be fully
occluded without any detrimental affects.

• Light sensitivity - Extreme light conditions had a negative impact on the card de-
tection. A brightly and directly lit area caused tags, outside of the light, not to be
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Figure 29: Eye Of Judgment Test setup and playing card. - Shown left is the setup
for the commercial product Eye of Judgment. Shown right is one of the play cards included
in the original set.

detected properly. The testing procedure for the developed prototype revealed that in
a direct light situation, a number of tags are rendered unrecognizable due to the light
being reflected off the tags, and directly into the camera. This issue is neatly avoided in
the Eye of Judgment, because the camera views the playing field at an angle and avoids
most of the light being reflected. In very low light conditions, camera noise became
very visible, and appeared to cause frequent detection problems. Certain cards would
continuously switch between being detected and not detected, while remaining static.
Photos of the described light scenarios, used with the Eye of Judgment, are included on
the supplemental DVD.

• Delayed reaction - Regardless of light intensity, the virtual elements seemed to react
with a slight delay to changes in front of the camera. It is likely that the development
team determined that it was best to let virtual elements transition between places,
instead of instantly ”warping” in-between positions. It is also possible that the game
uses a small portion of time to double check for a cards location and existence, before
altering the virtual world to reflect the changes in the real one.

• Pose Estimation - Overall, the pose estimation used in the Eye of Judgment appears
to be both stable and accurate. Exactly how accurate the pose estimation is, is virtually
impossible to determine without deeper access to the games internal code. I find it fitting
to note that the pose estimation developed for the prototype also appears accurate when
observed during use. However, testing has clearly shown that it is less accurate than the
OpenCV counterpart and is also perhaps the cause of the abrupt endings to the game
sessions. The time I spent playing the Eye of Judgment did not reveal game mechanics
that appeared to require as precise interaction as used in the developed prototype.
Therefore, even a black box test of the pose estimation would prove challenging.
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The Eye of Judgment is a good example, of how hard it is, to get acceptable results in any
given situation. Clearly, the detection used in the game could still use improvement and has
flaws similar to that of the developed prototype. I would speculate that quality of the pose
estimation has been prioritized to work optimally in select situations. The commercial product
would not generate further sales by making it capable of being played in darkness. Therefore,
the tracking and pose estimation, in the Eye of Judgment, is in all likelihood intentionally left
incapable of handling every situation. It should be noted that, the PlayStation Eye camera
[Wikk] used for the game delivers the same resolution and frame-rate as the camera used in
this thesis, but it appears to deliver images of lower quality. The playing surface it observes
is 30cm× 30cm compared to the 42cm× 30cm used in this thesis.

11.4 Further study and future improvements

This project has personally been my first step into working with augmented reality. It should
therefore come as no surprise, that it an immense number of clear-cut possible improvements
exist. I intend to describe the ones I find most significant in the following list:

• Improved Tag filtering - As described in Section 9.3, an extensive number of contours
are searched for the presence of potential tags. How deep to delve into certain contour
branches can be determined by examining their size during traversal. If a contour is
too small to contain a tag, it should not be further examined. This would improve
detection and conserve calculations. The tag filtering process could also be improved
by calculating whether the detected square, is a valid projection of a square with equally
long sides.

• Alternate Tag Detection Algorithm - Apart from increasing the overall robustness
of the implemented algorithm, Mark Fiala introduces a technique [Fia04a, Fia04b],
which even allows for the tag to be partially occluded and still properly detected. A
thorough comparison, and implementation of this new approach, would be a top priority
due to the number of comments received from players, regarding tag occlusion.

• Head mounted displays - Although a number of players were concerned regarding the
potential lack of challenge caused by only needing to focus on one area, implementing
the prototype using a head mounted display is ideal for further study. I believe that
by using head mounted displays one of the largest barriers between the virtual and real
world is removed, which could potentially lead to a better overall experience.

• Multiple Cameras - Multiple cameras would improve pose estimation and reduce
occlusion caused tag misdetection. However, the added complexity might be too large,
to justify the benefits.

• Pose estimation improvement - As clearly shown in Section 11.1.2, the pose esti-
mation implemented in this thesis, is less precise than the algorithm provided by the
OpenCV library. Hartley and Zisserman [HZ04] show that data normalization signifi-
cantly improve the calculated homography, and would be an ideal improvement to the
implemented algorithm. Other possible improvements include using multiple tags to
improve pose estimation and minimize problems related to tag occlusion.
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• Overall prototype refinement - A number of improvements could be implemented
based on the players suggestions, such as visual feedback, audial feedback, more game
goals, etc. The prototype also has a number of program related issues which could be
addressed, such as properly cleaning up used memory.

• Alternate applications - Implementing other games (such as ones mentioned in Sec-
tion 7), or applying the interface to other tasks, would further test the benefits and
problems regarding the interface. A few players suggested using the interface to com-
puter aided design, which I believe would be an ideal choice warranting further study.

• Improved pose estimation testing - The testing procedure described in Section 11.1.2
uses averaged values, of all the tags poses and orientations, to estimate a common plane.
The procedure could be improved by more accurately measuring the plane the individ-
ual tags are supposed to represent. Under the assumption that the largest portion of
tags are estimated correctly, the plane could be estimated by iteratively altering its
position and orientation until the overall deviation from each tag is smallest. In other
words, the most tags would deviate the least from this estimated plane.

• Thorough testing using refined prototype - The program and user testing per-
formed in this thesis, has made clear which areas of the prototype could use further
refinement. By addressing the issues raised by the individual test protocols, and expand-
ing the number of participants in each test, more conclusive and precise measurements
could be achieved.
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12 Conclusion

As this is the final section, it is only fitting to draw conclusions, based on the accomplishments
in this thesis. The most significant ones are detailed in the following list:

• Real-Time Tag tracking and pose estimation - Fully functioning real-time tracking
and pose estimation has been described and implemented.

• Augmented reality board game - A number of game concept candidates have been
considered and described. One has been implemented as a working prototype.

• Tracking and pose robustness - The robustness of tracking and estimating of poses
has been measured and compared to another similar implementation. An informal
comparison with an existing commercial product has also been conducted.

• User testing - The developed prototype has been submitted to a qualitative testing
process which made use of the ”think-aloud” testing protocol.

• Future improvements - The testing has shown a large room for improvement, both
in regards to the game, the interface and the tracking software. Possible solutions to
these issues have been considered and detailed.

Apart from the accomplishments described in the list above, I have personally learned a
great deal from the project. I am almost more fascinated by the technology now than I was
before. There has only been a single commercial product, in recent years, which really makes
use of the technology. In addition to that, it only scratches the surface of the possibilities
provided by augmented reality. The prototype game developed and results gathered in this
thesis, indicate that the use augmented reality is both viable and usable. Several of the
related projects also pave the way for this ideology, and I hope to see more of this technology
in connection with games in the future.
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Appendices

A Interview Questions

1. How was it?

2. How was the experience of playing with the game pieces?

3. Was it a challenging to move the game pieces around? Did it require more of your
concentration, than actually playing the game?

4. Was it difficult to control the game using the game pieces?

5. Was the game logical? What made sense? What did not make sense?

6. Did the game increase in difficulty?

7. What are your thoughts on how to make the game easier?

8. What are your thoughts on the act of coordinating what happened in-front of you, with
what was happening on the screen?

9. Would the game be easier if you were not required to observe the screen during play?

10. What made the game difficult?

11. Was it more challenging to ”move the bricks” or ”play the game”?

12. If you could change anything in the game, what would it be?

13. What else do you think this type of interface can be applied to?

14. Did the different colors of the game pieces make a difference during the play session?
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