
Realistic Virtual Cuts

Lasse Farnung Laursen

Kongens Lyngby 2012
IMM-PHD-2012-270

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Abstract

Pigs and pig meat are major sources of income for Denmark. As one of the
country’s primary exports, it is no wonder that Denmark strives to maintain
its competitive edge in the meat market. As part of an on-going effort to lower
costs and maintain high standards, X-ray computed tomography (CT), along
with image analysis, is being deployed in Danish abattoirs. The data made
available from scanning pig carcasses paves the way for new means to optimize
the production process.

This thesis is concerned with the development of a communication tool intended
to make use of the aforementioned technology in the product prototyping pro-
cess. In broad terms, the focus can be divided into two areas of focus: visual-
ization and interaction.

Visualizing volume data, obtained via CT-scanning, is a common area of re-
search within other areas of research, e.g. for medical applications. The avail-
ability of graphics processing units, and the subsequent programmability of the
unit, has allowed for computationally heavy visualization algorithms to execute
in real-time. Despite the flexibility of modern GPUs, their architecture still
poses problems that require further study. The thesis presents research within
the area of texture synthesis and data interpolation in an effort to create even
more realistic volume data visualization.

The potential advantages provided by volume data, is exponentially expanded
when we are free to interact with it. The food industry sees a significant benefit
in volume interaction when concerned with product development. Product earn-
ings projection, product specifications, and interactive training are just a few of
the applicable areas. In this thesis we present an interaction method intended

ii

for the commercial development of meat product prototypes. The interaction
method is evaluated in a thorough usability study with eight voulenteer partic-
ipants from the target user group.

This thesis presents technology and research which, combined with the advent
of using CT in the abattoir, paves the way for new possibilities and advantages
when designing meat product prototypes. I have no doubt that this is just the
tip of the iceberg in regards to modernizing and optimizing the way animal
carcasses are processed and handled before becoming consumer goods.

Resumé

Svin og svinekød er én af Danmarks største indkomstkilder. Som et af landets
primære eksportprodukter er det ikke overraskende, at Danmark stræber efter at
være førende p̊a et konkurrencebetonet internationalt marked. Som et led i den
igangværende indsats for at mindske produktionsomkostninger og opretholde
høje produktstandarder er danske slagterier begyndt at anvende røntgen com-
puter tomografi (CT) og digital billedbehandling. Data der opsamles via disse
metoder, baner vejen for nye m̊ader til at optimere produktionen.

Denne afhandling omhandler udviklingen af et kommunikationsværktøj, som gør
brug af ovemst̊aende teknologi i processen for udvikling af kødproduktprotoyper.
Afhandlingens fokusomr̊ader kan deles i to større kategorier: visualisering og
interaktion.

At visualisere CT data er allerede et stort forskningsomr̊ade i andre felter, fx
til medicinsk anvendelse. Den udbredte integration af grafikhardware og der-
tilhørende fleksibilitet af hardwaren, har tilladt at man nu er i stand til at køre
yderst krævende grafiske algoritmer i realtid. P̊a trods af fleksibiliteten, som
moderne grafik hardware tilbyder, medfører hardwarens begrænsede arkitetktur
stadig problemer, der burde undersøges. Denne afhandling præsenterer forskn-
ing indenfor tekstursyntese og datainterpolation i bestræbelsen p̊a at opn̊a mere
realistisk volume-visualisering.

De potentielle fordele, som CT-data kan tilføre,vokser eksponentielt, n̊ar brugeren
f̊ar mulighed for at interagere med dem. Der er betydelige fordele forbun-
det med volumedata-interaktion i forbindelse med produktudvikling set fra
fødevareindustriens perspektiv. Indtjeningsprojektion p̊a produktet, produkt-
specifikationer og interaktiv træning er kun nogle af de mulige anvendelsesomr̊aderne.
Denne afhandling præsenteres en interaktionsmodel for at udvikle kommercielle
kødproduktprototyper. Interaktions modellen evalueres gennem en omfattende

iv

’usability test’, hvor otte brugere fra m̊algruppen deltog.

Afhandlingen præsenterer teknologi og forskning, som sammen med anvendelsen
af CT i moderne slagterier baner vejen for nye muligheder og fordele inden for
udviklingen af kødproduktprototyper.

Jeg er ikke i tvivl om, at dette kun er toppen af isbjerget med hensyn til at mod-
ernisere og optimere m̊aden, hvorp̊a svinekød bliver bearbejdet og h̊andteret,
inden det sælges til forbrugerne.

Preface

This thesis was prepared at the Image Analysis and Computer Graphics group
at DTU Informatics and submitted to the Technical University of Denmark
(DTU), in partial fulfillment of the requirements for the degree of Doctor of
Philosophy, Ph.D., in Informatics and Mathematical Modeling. The project
was funded by DTU, the Danish Meat Research Institute [28] and the ITMAN
Graduate School programme.

The work herein represents selected parts of the research work carried out in the
Ph.D. period. The thesis consists of three research papers, one technical report,
and an introductory part containing background information and an overview
of the contributions.

The work was carried out in collaboration with the Danish Meat Research In-
stitute of the Danish Technological Institute (previously of the Danish Meat
Association) in Roskilde, Denmark. Part of the research was conducted at
the IGARASHI Laboratory of the University of Tokyo in Japan, under the su-
pervision of Takeo Igarashi. The project was supervised by Professor Bjarne
Kjær Ersbøll, from DTU Data Analysis, and Associate Professor Jakob An-
dreas Bærentzen from DTU Informatics, and by Senior Researcher, Ph.D. Lars
Bager Christensen, Danish Meat Research Institute.

Kgs. Lyngby, April 2012
Lasse Farnung Laursen

vi

List of Papers

Listed here are the scientific publications prepared during the course of the
Ph.D. program. The publications included in part II of the thesis are referred
to by their respective chapter number.

Conference papers:

Ch. 8 [74] L. F. Laursen, J. A. Bærentzen, and B. K. Ersbøll. Anisotropic
3D texture synthesis with application to volume rendering. International
Conference on Computer Graphics, Visualization and Computer Vision,
WSCG ; 19 : Plzen, Czech Republic. 2011.

Ch. 10 [75] L. F. Laursen, H. Ólafsdótir, J. A. Bærentzen, M. S. Hansen,
and B. K. Ersbøll. Registration-based Interpolation Real-Time Volume
visualization. Proceedings of the 28th Spring Conference on Computer
Graphics. 2012.

Ch. 11 [70] L. F. Laursen, J. A. Bærentzen, T. Igarashi, M. K. Petersen, L.
H. Clemmensen, and B. K. Ersbøll. Pig Product Prototyper: Cutting
interface design. NordiCHI 2012 Proceedings. (Submitted, April 2012).

Technical report:

Ch. 9 [71] L. F. Laursen, L. H. Clemmensen, J. A. Bærentzen, T. Igarashi, B.
K. Ersbøll. Automatic Quality Measurement and Parameter Selection for
Example-based Texture Synthesis.

viii

Publications not directly referenced or outside the theme of the thesis are listed
below:

[24] L. K. H. Clemmensen, and L. F. Laursen. Improving texture optimization
with application to visualizing meat products. Scandinavian Workshop
on Imaging Food Quality, SWIFQ : Ystad, Sweden, 2011.

[73] L. F. Laursen, and B. K. Ersbøll. GazeTrain: A case study of an action
oriented gaze-controlled game. The 5th Conference on Communication by
Gaze Interaction - COGAIN 2009.

Co-authors of the publications in Part II and their affiliations are listed below
in alphabetical order.

• JAKOB ANDREAS BÆRENTZEN
DTU Informatics, Technical University of Denmark, Lyngby, Denmark.

• LINE KATRINE HARDER CLEMMENSEN
DTU Informatics, Technical University of Denmark, Lyngby, Denmark.

• BJARNE KJÆR ERSBØLL
DTU Informatics, Technical University of Denmark, Lyngby, Denmark.

• MICHAEL SASS HANSEN
DTU Informatics, Technical University of Denmark, Lyngby, Denmark.

• TAKEO IGARASHI
IGARASHI Laboratory, The University of Tokyo, Tokyo, Japan.

• HILDUR ÓLAFSDÓTTIR
DTU Informatics, Technical University of Denmark, Lyngby, Denmark.

• MICHAEL KAI PETERSEN
DTU Informatics, Technical University of Denmark, Lyngby, Denmark.

Acknowledgments

First and foremost I would like to the people who have, spiritually, contributed
the most to this thesis: my current and former colleagues of the Image Analysis
and Computer Graphics Group at DTU Informatics. It has been a pleasure
fostering new friendships and talking with people in the same predicament as
one self. A special thank you goes out specifically to my former colleagues of
the ’glass prison’ on the first floor of Building 321. I’m also grateful for the
generous anonymous candy donation by an undisclosed group (yes, you read
right), dispite the fact that I rarely consume candy.

I wish to thank both my supervisors at DTU Informatics, Bjarne Kjær Ersbøll
and Jakob Andreas Bærentzen, for their continued guidance, optimism and su-
pervision throughout the project.

I would also like to extend my gratitude towards the entire staff Danish Meat
Research Institute in Roskilde, and especially Lars Bager Christensen who also
supervised this project from start to finish. I am grateful for his interest in the
project and positive perspective on almost any conceivable situation.

Takeo Igarashi also deserves my appreciation and gratitude for hosting me
during my external stay in Japan, at the University of Tokyo and associated
IGARASHI User Interface Research Group. I also extend my thanks to Jun
Kato, Nobuyuki Umetani, and Kenshi Takayama, for helping me out upon ar-
rival, making me feel welcome and generally making my stay more pleasant.

I would also like to thank Camilla Himmelstrup Trinderup, Jacob Lercke Skytte,
for helping me proof read this thesis and providing me with valuable and

x

thoughtful feedback. Thomas Hammershaimb Mosbech and John Mox deserve
extra special attention for their — special — contributions and attention to
detail. Line Katrine Harder Clemmensen is also deserving of my thanks for her
aid in statistical analysis.

Last but not least, I want to thank my parents Ivy and Johs, as well as my
brother Daniel and my sister Tina, for supporting me all throughout my life.
My thoughts also go out to my aunt Nane for whom I hope a speedy recovery.

xi

xii Contents

Contents

Abstract i

Resumé iii

Preface v

List of Papers vii

Acknowledgments ix

Contents xiii

I Summation 1

1 Introduction 3

1.1 Motivation and Objectives . 6

1.2 Thesis Outline . 7

xiv CONTENTS

1.3 Abbreviations . 9

2 Background 11

2.1 Evolution of the Modern Abattoir 11

2.2 Product Prototyping . 12

2.2.1 Visual Appearance . 13

2.2.2 Interaction . 14

3 Volume Data 17

3.1 Interpolation . 19

3.2 Rendering . 23

3.2.1 Transfer Functions . 27

3.3 Texture Synthesis . 30

3.4 GPU Accelerated Volume Cutting 32

3.5 Haptic Rendering . 34

3.5.1 Isosurface Haptic Rendering 38

4 Human Computer Interaction 43

4.1 Interface Design . 44

4.2 Usability Study . 45

4.3 Overview . 47

4.4 Planning and Information Gathering 47

4.4.1 PPP Planning . 50

4.5 Test participants . 53

CONTENTS xv

4.6 Performance metrics . 54

4.7 Formative Usability Study . 56

4.7.1 PPP Testing procedure 57

4.7.2 Pilot Study . 65

4.7.3 Expert Product Creation 66

4.8 Results . 68

4.8.1 PPP Results . 68

4.9 Discussion . 76

5 Future Parameterization 77

5.1 Future Integration . 79

6 Overview of Contributions 81

6.1 Customized Texture Transfer function 81

6.2 Automatic Quality Measurement and Parameter Selection for
Example-based Texture Synthesis 83

6.3 Real-Time Registration Based Volume Interpolation 85

6.4 Pig Product Prototyper: Cutting interface design 87

7 Conclusion 89

7.1 Summary . 89

7.2 Conclusion . 91

xvi CONTENTS

II Contributions 93

8 Anisotropic 3D texture synthesis with application to volume
rendering 95

8.1 Introduction . 95

8.2 Related Work . 96

8.2.1 Solid Texture Synthesis 96

8.2.2 Volumetric Transfer Function 97

8.3 Overview . 98

8.4 Solid Texture Synthesis . 99

8.4.1 Approximate Nearest Neighbor 102

8.4.2 Weighting Scheme . 102

8.4.3 Meanshift . 103

8.4.4 Histogram Matching . 103

8.4.5 Synthesis Convergence Conditions 104

8.5 Exemplar Acquisition . 104

8.6 Rendering . 105

8.7 Results . 108

8.8 Conclusions and Future Work . 110

8.9 Acknowledgments . 111

9 Automatic Quality Measurement and Parameter Selection for
Example-based Texture Synthesis 113

9.1 Introduction . 114

CONTENTS xvii

9.2 Related Work . 115

9.2.1 Texture Synthesis . 115

9.2.2 Direct Parameter Optimization 116

9.2.3 Indirect Parameter Optimization 116

9.2.4 Accelerating Texture Synthesis 116

9.3 Texture Optimization . 117

9.3.1 Synthesis Parameters . 119

9.4 Direct Parameter Selection . 120

9.4.1 Neighborhood size estimation 121

9.4.2 Convergence estimation 125

9.5 Indirect Parameter Selection . 125

9.5.1 Tested Synthesis Parameters 126

9.5.2 Texture Similarity Measurements 128

9.5.3 Determining parameter bounds 130

9.5.4 Evaluate objective measurement 132

9.5.5 Automated texture synthesis 132

9.6 Indirect Parameter Selection Results 132

9.6.1 Summary . 135

9.7 Limitations . 136

9.7.1 Direct Parameter Selection 136

9.7.2 Indirect Parameter Selection 137

9.8 Conclusion . 138

xviii CONTENTS

9.9 Future Work . 139

10 Registration-based Interpolation Real-Time Volume visualiza-
tion 141

10.1 Introduction . 142

10.2 Related Work . 143

10.3 Overview . 144

10.4 Registration Based Interpolation 144

10.4.1 GPU Implementation Notes 146

10.5 Testing . 148

10.5.1 Setup and protocol . 148

10.5.2 Quantitative Evaluation 150

10.5.3 Multiple Deformation Slice Correspondence Comparison . 151

10.5.4 Qualitative Evaluation . 153

10.5.5 Performance Benchmark 154

10.6 Conclusion . 155

10.6.1 Future Work . 155

11 Pig Product Prototyper: Cutting interface design 157

11.1 Introduction . 158

11.2 Related Work . 159

11.3 Design Process . 160

11.4 Implementation details . 162

11.5 Interfaces . 163

CONTENTS xix

11.5.1 Mouse Interface . 164

11.5.2 Phantom Omni . 165

11.6 Evaluation . 167

11.6.1 Expert Product Creation 167

11.6.2 Formative Usability Study 168

11.6.3 Results . 171

11.7 Conclusion . 176

11.7.1 Future Work . 177

11.8 Acknowledgments . 178

III Appendix 179

xx CONTENTS

Part I

Summation

Chapter 1

Introduction

In 2011, approximately 21 million pigs were slaughtered in Denmark [34]. About
90% of the resulting product was exported to more than 100 countries all over
the world, corresponding to almost 1.9 million tonnes of pig meat exported
in the year prior to 2011. This collective export of pig meat amounts to 28.1
billion DKK annually [35], which accounts for almost half the value of the danish
agricultural export [33].

Denmark is among the leaders within the pig meat industry and is known for
its high standards of quality. However, according to industry experts, Denmark
is no longer years ahead of its competitors, as was the case about a quarter of a
century ago. With its high dependency on export, the danish pig meat industry
is under constant pressure to remain competitive against rivaling pig exporting
countries, such as Germany and Spain. The most difficult challenge facing
the Danish pig meat industry is how to maintain the current high standards of
industry safety, product quality and price, despite the higher expense associated
with Danish production costs.

A break down of the cost/profit relationship of Danish production of pigs is
illustrated in Figure 1.1. It is clear that the biggest costs covered involve the
raw materials, followed by the production wages. The most straight-forward
profitable move is to reduce the costs of the raw materials involved. However,
in the Danish pig meat industry, a majority of the suppliers are also the owners

4 Introduction

[40]. Thus, a reduction in raw material costs would not result in a net gain for
the owners, and is therefore not appealing.

 4

• The ownership structure of the largest Danish slaughterhouses is a co-operative

structure. The strong advantage of such a co-operative structure is the potential

very solid relations to the suppliers (the farmers). The structure can certainly

also have some disadvantages, especially regarding financial consolidation and

providing additional equity for large investments. In general, the owners do not

appreciate financial consolidation within the slaughterhouses as they cannot sell

their part of the equity as normal shareholders can. The slaughterhouses have

entered into long term contracts with the farmers, in which the slaughterhouses

guarantee to buy all pigs produced by the farmers. Due to the long term

contracts, the Danish slaughterhouses are less flexible than traditional industrial

companies as they, in the short term, cannot decide how much to produce (the

production volume is more or less given) but can only decide what to produce

and how to produce it.

• The value added in the slaughterhouses is relatively limited. The Danish

slaughterhouses annual accounts [Danish Crown (2007) and Tican (2007)] have

been analysed in order to investigate the cost structure. Due to Danish Crown’s

accounting principles their annual accounts are less informative regarding their

cost structure. Therefore the analysis is based on Tican’s annual accounts, but it

is expected that the cost structure for Danish Crown is not that different. Figure

3 below describes how a turnover of DKK 100 is used to cover different types of

costs.

Distribution of Cost and Profit

raw materials; 64,9%
production wages; 14,3%

distribution; 4,9%

other; 14,2%

depreciation and

 finance; 2,3%

administration; 1,6%

Figure 3. Distribution of costs and profit at Tican a.m.b.a.

Figure 1.1: Cost/profit relation of the Danish production of pigs in 2009. The
percentages reveal how large a portion of the profit from sold products was spent on
the tasks required to produce them. For that particular year, the costs outweighed the
profit and the chart sums to more than 100% as a result. Chart courtesy of Kjærsgaard
[61].

The most appealing approach to minimize costs and increase profit, is to further
optimize and innovate production, thereby remaining competitive without low-
ering wages or standards. The modernization of danish abattoirs using research
and new technology [53] has formally been underway since the foundation of
the Danish Meat Research Institute (DMRI) in 1954. Owned by the industry
organization of Danish slaughterhouses, the institute has a close collaboration
with the pig producers, focusing on developing methods and technologies for
the safe and efficient production of meat products with high quality standards
at competitive prices [28]. Merging with the Danish Technological Institute in
2009, the company’s goals remain unchanged.

The recent introduction of X-ray computed tomography [58] in the danish abat-
toirs, for the purposes of more accurately estimating a pigs lean meat percentage,
has opened up new possibilities for improvement in the pig product develop-
ment cycle. In collaboration with DTU Informatics and related third parties,
the Virtual Slaughterhouse project (VSH) was launched in 2006. The project
demonstrated the practical application of X-ray CT along with image analysis
in the context of an abattoir [32, 48, 116].

The availability of representative pig carcass volume data also paves the way
to modernizing tasks surrounding the handling and production of pig meat

5

products. Specifically, the development, prototyping and selling of a new pig
product to a prospective client. Although the Danish pig meat industry has
played essential part in standardizing international practices with which a pig
carcass is disassembled, there are still significant differences in the products
being brought to the consumer market, in different parts of the world. Due
to the natural biological variations among pigs as well as individual market
demand, the number of viable consumer products is virtually endless. As a
result, new products are continuously being developed to fit an ever changing
market.

In broad terms, there are two kinds of potential product development scenarios:

• New Product — In this scenario, the prospective client usually contacts
the pig meat producing company in order to buy a new type of product.
The parties meet to discuss terms and resolve any potential ambiguities. If
the terms are acceptable to both parties, a prototype batch of the discussed
product is produced and an iterative development cycle is begun. At the
end of the cycle, the final product is delivered in its entirety to the client.
The development process from first contact until the final prototype has
been created can take several weeks.

• Repeated Product — A pre-existing trade relationship is continued by
either producing more of an already defined product, or iterating on the
product with minor changes.

It is primarily the former of the two scenarios that is ideally suited to be im-
proved upon, by leveraging the recently introduced CT-scanning technology. At
the time of writing this thesis, the development of a new meat product for a
prospective client is predominantly analogue and far from standardized. The
communication is primarily verbal, with occasional use of reference images. Due
to the natural biological variation in pigs and a lack of complete standardization
in the industry, ambiguities occur. A single ambiguity not only means a waste
of resources, both in terms of manpower and prototyped product, but also in
terms of time. The development time from specifications to first prototype can
take weeks, and portions of the process has to be repeated if problems occur.

This thesis advances the ideas and concepts from the VSH in a new direction.
Previous work in the VSH has mainly centered its focus on the actual production
line and associated tasks. This thesis is concerned with the iterative prototyping
phase conducted prior to any actual production work. The thesis addresses
existing communication issues through a developed communication tool and
related technology.

6 Introduction

1.1 Motivation and Objectives

The work presented in this thesis concerns research within the areas of visual-
ization and human-computer interaction. The research is motivated by its ap-
plicability, in a commuication tool, intended to improve upon the development
of new products in the meat industry. The design process behind this communi-
cation tool (application), is driven by a combination of industry knowledge, trial
and error, and design heuristics. Significant design decisions are briefly noted
in this section to motivate the topics of this thesis. The motivations behind the
decisions, as well as the consequences are discussed in greater detail in the later
chapters.

The recent introduction of CT-scanning technology in the abattoir has enabled
the acquisition of volume data from pig carcasses. During product development,
the anatomy of the pig serves as a makeshift product cutting blueprint. Render-
ing this volume data leads to a realistic depiction of the pigs anatomy, ideal for
use during product development. To achieve real-time rendering performance,
the tool leverages the computational power of modern graphics processing units
(GPUs). Visualizing the virtual pig carcass is just the first step. The com-
munication tool should provide functionality for interacting and cutting in the
virtual pig carcass, to help define product specifications. The real world inter-
action between pig meat and knife was used as initial inspiration for interaction
style provided by the tool. A trained butcher relies on the resistances exerted
on the knife, as it makes its way through pig muscle, fat and bone. This tactile
sensation can be simulated through a haptic feedback device. The Phantom
Omni (c©Copyright Sensable Technologies, Inc.) is an afforable haptic device,
ideal as a primary candidate for haptic interaction. Interacting with volume
data rendered via GPUs poses a number complex of challenges. Since most
of the initial products developed from a pig carcass make use of planar cuts,
which is also ideally suited for the hardware accelerated rendering, this cutting
interaction was prioritized.

To sum up, the overall goal of this thesis is to research and develop a system for
the purposes of visualizing and interacting with virtual pig meat. The thesis’
main areas of focus are:

• Visualization — To research and apply methods for realistic rendering
of volume data. Specifically, pig meat data.

• Human-Computer Interaction — To research and develop an inter-
active haptic-enabled cutting system for the purposes of simplifying and
improving the existing communication process.

1.2 Thesis Outline 7

1.2 Thesis Outline

This thesis consists of two parts. The first part introduces and summarizes the
work carried out during the Ph.D. program. The second part is comprised of the
scientific publications prepared. Due to the self-contained nature of scientific
papers, overlap occurs between the two parts.

Part I

Chapter 2 gives an introduction to the motivation and intentions of the work
presented in the thesis, as well as drawing parallels to related projects.

Chapter 3 concerns itself with topics related to volume data in a primarily
visualization context. The basics behind volume data representation, in-
terpolation, rendering, interaction and visual enhancements are presented.

Chapter 4 gives an abstract introduction to design consideration and inter-
faces in general. Key principles behind formative usability testing are
described, followed by the usability study conducted in association with
the completed prototype interface. The study describes the entire process
from initial planning and information gathering, to selected metrics, as
well as the measured results.

Chapter 5 discusses future work of expanding the user interface, as described
in chapter 4, as well as the necessity of integrating existing research re-
garding the parameterization of pig carcasses. The chapter concludes by
briefly touching upon integration of the new technology into the current
and future work flow in the meat industry.

Chapter 6 gives a summary of the results of part II and the main contributions
of the thesis.

Chapter 7 contains a discussion of the contributions in relation to the objec-
tives as well as future work. Finally, the chapter concludes the thesis with
some closing remarks.

Part II

Chapter 8 presents a novel approach to improve volume rendering by using
synthesized textures in combination with a custom transfer function. Ex-
isting knowledge is used to synthesize anisotropic solid textures to fit our
volumetric data. As input to the synthesis method, we acquire high quality
images using a 12.1 megapixel camera. The rendering pipeline is extended
by creating a transfer function which yields not only color and opacity

8 Introduction

from the input intensity, but also texture coordinates for our synthesized
3D texture. Thus, we add texture to the volume rendered images.

Chapter 9 describes automatic parameter optimization methods for example
based texture synthesis. We cover research to directly estimate specific
texture synthesis parameters, such as patch size and iteration convergence,
based on input textures. We also examine various similarity measures and
evaluate their effectiveness. The goal for each measure is to properly eval-
uate how well the resulting synthesis compares to the original input. A
good similarity measure will enable the search for the optimal texture syn-
thesis parameters by maximizing the quality of the synthesis as a function
of parameters.

We apply the presented methods to a state of the art texture synthesis
algorithm, namely the one proposed by Kopf et al [62]. It is easy to find a
set of exemplars for which there is no single optimal set of settings. The
results show a promising foundation for further research in establishing an
automated optimal synthesis for a multitude of textures.

Chapter 10 addresses the issue of sparse anisotropic volume data. Interpo-
lating anisotropic data using standard techniques results in suboptimal
visual results. We present a novel approach for improving real-time vol-
ume data interpolation on a GPU. Our approach uses a pre-computed set
of cross-slice correspondences to compensate for missing data.

We perform a qualitative analysis comparing sparse data sets derived from
the ground truth. We investigate how the visual quality degrades as data
becomes more sparse, testing the limits of the interpolation method. The
method is ideal for reconstructing sparse data sets, as well as minimizing
quality loss while scaling large amounts of data to fit on most mobile
graphics cards.

Chapter 11 presents Pig Product Prototyper, an application intended to aid in
the communication process between producer and retailer when develop-
ing new meat products for a constantly evolving market. The application
interface allows the user to make planar cuts to a virtual pig formed from
CT-scans of a real-world pig carcass. We perform a comparative study of
two different controller interfaces for the application, one being a tradi-
tional mouse and keyboard input, and the other a six degrees of freedom
haptic feedback device. The goal was to assess usability issues and overall
usability for the target group concerning both interfaces.

The accurate depiction of pig anatomy can guide trained professionals to
re-create standardized pig products. The results of the usability test with
sales personnel do not lean significantly in favor of either interface, despite
the participants expressing favor towards one interface. This stalemate
carries a significance in regards to the more alien interface introduced to

1.3 Abbreviations 9

the users. We describe the design process and observed user experience
regarding the two interfaces.

1.3 Abbreviations

2D Two Dimensional
3D Three Dimensional
API Application Programming Interface
CPU Central Processing Unit
CSG Constructive Solid Geometry
CT X-ray Computed Tomography
DMRI Danish Meat Research Institute
DOF Degrees of Freedom
DTU Technical University of Denmark
GLSL OpenGL Shading Language
GPU Graphics Processing Unit
GUI Graphical User Interface
HCI Human-Computer Interaction
HIP Haptic Interaction Point
HU Hounsfield Units
HUI Haptic User Interface
LMP Lean Meat Percentage
MRI Magnetic Resonance Imaging
PCA Principal Component Analysis
PET Positron Emission Tomography
PPP Pig Product Prototyper
RGB Red, Green, Blue
VHIP Virtual Haptic Interaction Point
VSH Virtual Slaughterhouse

10 Introduction

Chapter 2

Background

This chapter elaborates on the motivations mentioned in Section 1.1, by pre-
senting background information related to the topics of the thesis.

2.1 Evolution of the Modern Abattoir

As emphasized in the introduction in chapter 1, the danish pig meat industry is
a principal cornerstone of Denmark’s exports, and is under constant pressure to
evolve in order to maintain its competitive edge in the global market. As with
other big industries, the pig meat industry has followed common optimization
practices such as centralization, automation, and digitization:

• Centralization — In the past, slaughterhouses were smaller and func-
tioned more independently with related offices in the same building. As
part of the on going optimization effort, these distributed slaughterhouses
have been consolidated into bigger more modern abattoirs. Local offices
are still present, but the centralization has led to a consolidation of most
offices into a single main headquarters.

• Automation — Arguably inspired by the automobile industry [57], the
assembly line process of slaughtering pigs has, and continues to, become

12 Background

more automated to make the process more efficient. Danish labor is ex-
pensive, and is therefore constantly the subject of optimization. Previ-
ous projects in the VSH have directly contributed to the efforts aimed
at automating the abattoir. Notable successes include automated carcass
cutting, and deboning procedures [53, 57].

• Digitization — Digitization is a broad term, but in this context it refers
to the application of technology as a means of creating a digital represen-
tation of a real world product, allowing for affordances not provided by the
real world counterpart. In this case, the application of X-ray computed
tomography to create a digital representation of a pig carcass allowing for
non-destructive interaction. Previous projects have aimed at allowing a
more realistic representation of the digital pig carcass [88], by modeling
pig tissue deformation.

Digitization is a critical development which paves the way for the described
advances in technology and interaction described in this thesis. In comparison
to centralization and automation, the process of digitization has a less direct
impact on the bottom line in a competitive industry, and instead serves as an
— as of now — relatively unexplored venue for improvement. It is precisely this
type of innovation that the Danish meat industry must spearhead, in order to
remain competitive, without sacrificing neither quality, nor price.

2.2 Product Prototyping

Digitization is a natural next step in the evolution and standardization of the
meat product development process. What makes the scenario presented in this
thesis particularly unique is the fact that, at the time of writing, no formal
structure exists for product prototyping. The product development process is
dynamic and highly dependent on the relationship between the buyer and the
seller. Consequently, the process is more suited to be supported by modern
technology, rather than being replaced by it.

Prototyping is an inherently destructive process when concerning meat products.
An entire pig carcass is potentially wasted to produce a single prototype, which
may or may not suit the buyers needs in the end. Introducing more realistic
product representation earlier in the development process, affirms the customers
expectations with regards to the real product being produced. The chances for
unexpected ambiguities are therefore automatically lowered.

It is important to note that the representation provided by any currently existing

2.2 Product Prototyping 13

computer system cannot hope to compare to the actual real-world product.
However, compared to verbal communication or static images, a more dynamic
interactive system will undoubtedly give a better impression of the product
under development. Additionally, a virtual representation has a number of
affordances and advantages that a real meat product cannot have. Key among
these is the non-destructibility and easier handling.

As stated in Section 1.1, the main objectives of this thesis is to research both
the visual and interactive aspects of the aforementioned digital product repre-
sentation. The application for the development of digital products has been
named the Pig Product Prototyper (PPP). It embodies the intentions of the
Danish meat industry, as a tool used during the communication process of new
meat product development. In general terms, it is a volumetric visualization
tool which provides an interactive cutting interface.

The following two sections present perspectives on visualization and interaction
related to the PPP, followed by a more abstract view of the potential advantages
provided by digital meat products, loosely related to this thesis.

2.2.1 Visual Appearance

As stated in the previous section, realistic appearance is important in order to
meet or alter the customers expectations. The more realistically the product
is presented during the prototyping phase, the less chance there is of wasting
valuable resources and time on developing a product which may not suit the
customers needs in the end.

With the acquisition of their first CT scanner in 2004, DMRI [28] took the
first big step towards digitizing meat products. The CT scanner was previously
owned by a hospital, and while poor in resolution compared to todays modern
CT scanners, it is a significant leap forward in technology in regards to appli-
cations in the meat industry. With this technology at hand, a more realistic
virtual representation of a given pig product is within reach. The anatomy of a
pig is proportionally sufficiently similar to that of a human, so it can easily be
scanned, without any modifications, in the CT scanner.

Volume data obtained via a CT scanner yields density values, also known as
Hounsfield units (HU), as the scanned pig carcass in Figure 2.1 shows. Density
data lacks appearance information, which is why the pig carcass is without
proper coloring. The data itself is usually anisotropic as a result of the process
used to acquire it. Modern CT scanners can also yield isotropic data, but the
process is more time consuming, and future integration of a CT-scanner in the

14 Background

Figure 2.1: Visualized volume data representing half a pig carcass scanned by a CT
scanner. Density values are scaled with the least to most dense being black and white,
respectively. The top image shows an opaque rendering of the data with a cutting
plane along the depth axis. The bottom image is a transparent rendering of the same
data without any cutting plane. The distance in between measurements along the pig
are spaced further apart than the other two axis, resulting in anisotropy.

slaughtering assembly line will require the scan to take no more time than any
of the other machines, making isotropic scans less feasible.

While the visualized pig carcass is clearly recognizable to an expert, a lot is
left to the imagination lacking both detail and color. Chapter 3 describes the
properties of volume data in greater detail, and introduces the challenges in
making this data both more realistic and visually appealing. The published
contributions of this thesis concerning visual quality improvements of volume
rendering is presented in chapters 8, 9, and 10.

2.2.2 Interaction

Digital objects are a strange phenomenon. They exist as concepts, metaphors, as
well as counterparts of real world objects. The ’realness’ of these virtual objects

2.2 Product Prototyping 15

continue to blur as multiple courts have, within the last decade, determined such
objects to be legal property. In many aspects, this puts these virtual creations
on equal footing with real world objects. However, it is beyond the scope of
this thesis to debate how digital objects relate to real world laws from a legal
perspective. The point is that whether or not something is real, depends on
perception. Our perception plays a large role in how we interact with objects
on a daily basis.

Traditionally visual and audial feedback have long been the primary means of
computers to provide its users with feedback during interaction. But visual and
audial stimuli affect just two of the five commonly recognized human senses.
Interacting with any real world object usually requires touching it, and the
utilization of this sense has seen a growing interest in research within the past
few decades. One of the first researched applications stems from 1996 [59].
The earliest practical application haptic feedback dates even further back to
early aviation history. Large aircrafts, not equipped with servo controls, would
be subject to forces exerted on it by air pressure, when approaching a stalling
position. The user (or pilot) would effectively be warned of the approaching stall
by vibrations through the controls, caused by wind. Installing servomechanisms
into these aircrafts provided benefits, but also removed the haptic side effect.
As a result, the vibration of the simpler controls were simulated mechanically
when the airplane’s instruments measured an angle indicating an approaching
stall.

Haptic interaction is also gaining ground within the medical industry. Although
the most advanced medical interactive systems, such as the da Vinci or ZEUS
[112] remote surgical machines, have yet to support haptic feedback, the po-
tential for haptic feedback within the medical field is significant, and has been
shown to positively effect the outcome of similar operations [14].

In this thesis, we explore a haptic enabled interface as a means of providing
more realistic interaction during the production of pig prototypes. The in-
troductory and technical aspects of both cutting and haptic rendering during
interaction are presented in Sections 3.4 and 3.5 respectively. The overall design
process of the interface implemented in the PPP as well as an introduction to
Human-Computer Interaction form the content of Chapter 4. The published
contribution concerning this topic is presented in Chapter 11.

16 Background

Chapter 3

Volume Data

As the previous chapter explains, there is a significant motivation in the realistic
depiction of pig carcasses in the PPP. Volumetric rendering is an ideal approach
for achieving this realistic visual depiction. This chapter explains the funda-
mentals behind volume data and associated technical challenges of volumetric
cutting and haptic rendering of volume data.

Real world objects are volumes, yet most graphics engines still rely on stan-
dardized triangle rendering algorithms. Triangles are the simplest geometric
shapes with a surface and are computationally cheap to draw. Even more so,
because all modern graphics hardware natively supports triangle rendering. But
since triangles only represent surface area, their ability to realistically represent
real world objects is limited. Volume data is a closer approximation to actual
matter as it represents both what is on, as well as beneath the surface. The
physical appearance of real world objects is highly dependent on more than just
what’s visible on the surface. An excellent example of this human skin. Slightly
translucent, the human skin allows light to penetrate its surface and scatter
beneath it, giving skin a very unique appearance. Accurate depiction of this
appearance, is only possible by modeling what’s beneath the actual surface of
the skin. Thus, the need for volume data.

Volume data is defined as a three dimensional discretely sampled data set. Each
point of data represents a sample at an infinitely small point:

18 Volume Data

f(~x) ∈ R with ~x ∈ R3.

Any position in our three dimensional space ~x, yields a scalar value f(~x).

Figure 3.1 shows a simple conceptual illustration of a 3×5×3 discreetly sampled
data set.

Y

Z
X

Figure 3.1: A simple 3 × 5 × 3 representation of volume data. Each ball represents
an infinitely small sampled point in space.

The individual points in volume data are often referred to as voxels and are
usually visualized as simple geometric primitives, such as squares or spheres (as
pictured in Fig. 3.1).

Since the first working prototype CT scanner developed in 1971 by Hounsfield
et al. [12], there has been a constant drive to evolve and improve the techniques
by which we obtain volume data. Today three dimensional data sets are obtain-
able through several means, e.g MRI, PET, or Ultrasound. CT scanning has
naturally evolved increasing in effectiveness and resolution, as well as spawning
a more focused and precise breed of scanners, referred to as Micro-CTs.

3.1 Interpolation 19

Hounsfield approached the problem of measuring a solid volume by simplifying
the problem to measuring individual slices intersecting the volume. Modern CT
scanners use more advanced software algorithms and process multiple slices as
measurements are performed. These machines are referred to as helical or spiral
CT machines, since they use a helical or spiral scanning pattern, respectively.
The density in between measured slices depends on the time available and the
required accuraccy. In most cases the measurement distance in between slices
is higher, than the distance in between voxels in a single slice, in order to save
time.

Single samples obtained via a CT scanner are measured in density, also known
as Hounsfield Units [12]. A single sample represents the density measured on the
Hounsfield scale. On this scale, air has a negative value of −1000, water density
is measured as 0, and muscle measured at a value of 40. As an interesting side
note, some of the first tissue to be measured by the prototype CT scanner was
pig meat [12].

An overarching goal of this thesis is realistic rendering of volume data. Volume
data is comprised of infinitely small points, measured from real world density.
All the data between these infinitely small points is effectively missing. We
need to apply methods with which to recreate this missing data, in order to
render our volume data without visible sparsity. Techniques to achieve this are
commonly known as interpolation.

3.1 Interpolation

Interpolation is the method with which we transform a discrete signal back into
a continuous one. Given a set of samples, interpolation provides the means with
which to recreate the data in between the samples. The optimal interpolation
algorithm is highly dependent on the type of data that is to be interpolated.
But in many cases, the type of data to be interpolated is not known in advance,
so a general solution is often preferred.

Interpolation relies on samples to extrapolate the missing data. In broad terms,
the two most significant elements of recreating missing data is how many of
our samples to consider, and how to weigh each of their contributions. The
process of recreating data via interpolation is referred to as reconstruction in
signal-processing litterature, where filter kernels define how many samples to
consider as well as their individual contribution. Figure 3.2 shows three common
reconstruction filters: box, tent and sinc.

20 Volume Data

A continuous signal is reconstructed by convolving the discrete signal (i.e. the
samples) with one of the reconstruction filters. The box filter corresponds to
piecewise constant interpolation which results in a very sharp, but rather blocky
reconstruction. The tent filter corresponds to linear interpolation and is com-
monly used as it provides an advantageous balance between computational com-
plexity and acceptable reconstruction. The sinc reconstruction filter, illustrated
in Fig. 3.2 (c), is the ideal reconstruction of the original signal.

However, there are two outstanding issues that invalidates the appeal of the
sinc reconstruction filter. First, the sinc function is infinite and considers every
sample to reconstruct the original signal. This is computationally infeasible and
therefore not a viable solution. Second, according to sampling theory, if the
continuous signal is band-limited with a cut-off frequency of vs, it is possible to
reconstruct the signal exactly, if the signal is sampled evenly at more than twice
the cut-off frequency. But real-world data is generally not band-limited, so even
given infinite resources, this approach would still not be able to reproduce the
exact signal.

Instead, the tent filter is commonly used as it provides an advantageous balance
between computational complexity and acceptable reconstruction.

-1 10
0.5-0.5

-1 10

1 1

-1 10

1

2 3-2-3

A B C

Figure 3.2: One dimensional reconstruction filters. A.) Box, B.) Tent, and C.) Sinc
filter.

Interpolation using the tent filter is most easily described using a simple exam-
ple. In a simple two dimensional coordinate space, we wish to determine the
value of a point not located directly on one of our known sample points. In
this case, it is point P , shown in Fig. 3.3 that we wish to reconstruct. Assum-
ing we know the values of the surrounding four samples (Q11, Q12, Q21, Q22),
determining the value of our unknown point P is quite easy.

We first linearly interpolate along the X axis yielding the values of R1 and R2

by calculating

3.1 Interpolation 21

x

y

Q Q

Q Q

R

R

P

12 22

11 21

2

1

y

y

y

x x x

2

1

p

2 1 p

Figure 3.3: A typical interpolation scenario where we wish to estimate the value at
point P , by interpolating the values of 4 close by known points (Q11, Q12, Q21, Q22).

f(R1) ≈ x2 − xp
x2 − x1

f(Q11) +
xp − x1
x2 − x1

f(Q21)

and

f(R2) ≈ x2 − xp
x2 − x1

f(Q12) +
xp − x1
x2 − x1

f(Q22)

respectively, where the function f(~v) yields the density value measured at point
~v. Finally, the interpolated value at P is determined, by interpolating along the
Y axis:

f(P) ≈ y2 − yp
y2 − y1

f(R1) +
yp − y1
y2 − y1

f(R2).

22 Volume Data

This approach, commonly known as bilinear interpolation, is easily extended
into the third dimension, by performing the aforementioned operations on two
axis aligned slices, and then linearly interpolating between the two resulting
values. A simple example of bilinear interpolation applied in 2D space is shown
in Fig. 3.4.

Figure 3.4: A simple 2D data set, with values ranging between 1 and 6 visualized
using cool and hot colors respectively. On the left (A), the data is visualized using
a box reconstruction filter. On the right (B), the same data is visualized using a
tent reconstruction filter. Images adapted from the Wikipedia Commons Images by
Berland [129].

Interpolating volumetric data is an essential tool for proper rendering. Even the
densest set of volume data will appear sparse if viewed close enough. Linear in-
terpolation is, in many cases, a more than adequate approach for reconstructing
missing data. It is simple and also generally supported by hardware. However,
the limitations of linear interpolation are especially noticeable when applying
the method to anisotropic data. As already noted, volumetric data tends to
be anisotropic in order to save time during scanning. A visual illustration of
both the box and tent filter applied to volumetric data is shown in Fig. 3.5.
Linear interpolation smooths the transition between data, but the result shows
some considerable artifacts. The simple approach of using the tent filter results
in improper weighted contributions by the surrounding voxels when estimating
missing data. This problem is addressed in Chapter 10 where an advanced in-
terpolation method is presented capable of real-time performance on modern
graphics hardware.

3.2 Rendering 23

(A) (B)

Figure 3.5: Anisotropic volume data, obtained by scanning a pig carcass. On the
left, the volume is rendered using a nearest-value filter (box filter). On the right, the
same volume is rendered using a tent filter.

3.2 Rendering

As established in the previous section, volume data consists of discretely mea-
sured samples in 3D. Interpolation allows us to reconstruct an approximation of
the original continuous signal, critical for proper rendering of the volume itself.

Over the past two decades, GPUs have undergone significant changes in both
design and operation, moving from a fixed non-programmable pipeline provid-
ing simple APIs, to completely programmable shaders providing advanced pro-
gramming functionality and control structures [92]. Traditionally, 3D graphics
rendering on a computer involves simple geometric shapes, such as triangles.
Since a triangle is the simplest geometric shape that has a surface, the fixed
graphics pipeline has evolved to primarily support this basic shape. Currently,
no volumetric rendering primitives are supported on modern GPUs, so other
means must be applied in order to render volumetric data.

Given that volumetric data sets are essentially individual slices through a dense
volume, it seems only natural that early volume rendering techniques mimicked
this, by rendering each slice on an individual transparent surface as a texture.
The layered surface, when viewed from the proper angle, faithfully reproduces
the image of the sampled volume.

24 Volume Data

Image Plane

Eye

Slice
Images

Figure 3.6: Illustration of an early volume rendering technique. Layered transparent
slices with textures combine to form a visualization of the volumetric data. Note that
the equal distance between image slices makes for an uneven sampling rate along the
rays traced from the eye.

This early approach allowed for semi-hardware accelerated volume visualiza-
tions. However, the resulting images contain uneven sampling, due to each slice
being uniformly spaced apart, as illustrated in Fig. 3.6. A more detrimental
side effect of blending several transparent textured surfaces, is the fact that the
most distant layers are inconsequential for the final result, leading to wasted
computations and poor performance. Lacroute and Levoy mitigate a number of
these issues in their notable shear-warp volume rendering algorithm [68]. How-
ever, the continued advancement of graphics hardware lead to other, more direct
methods of real-time rendering, becoming feasible.

Ray tracing, originally pioneered for rendering purposes by Arthur Appel in
1968 [8], has proven itself to be ideal for executing on todays modern GPUs.
The basic principles of raytracing are illustrated in Fig. 3.7, where a camera
projects view rays through an image plane, on to a scene. Each ray corresponds
to a single pixel on the image plane, and if the ray collides with an object from
the scene, its color is calculated based on its position relative to existing light
sources, in the scene.

With the advent of the modern graphics pipeline, illustrated in Fig. 3.8, both
vertices and pixels can be assigned customized instructions (commonly referred
to as shaders). Associating a single ray for every rendered pixel is an ideal fit
for GPU accelerated volume rendering. Proxy geometry, such as a cube, is often
used as a means of generating the required pixels for GPU raytracing. Krüger
and Westermann [65] detail the GPU accelerated approach in a number of steps.

3.2 Rendering 25

Camera

Image Plane

Scene Object

Light Source

View Rays

Figure 3.7: The essential elements of raytracing. A camera, from which view rays
are projected through an image plane. Upon collision with a scene object, the angle
to existing light sources is calculated and the final color value is calculated for that
specific pixel on the image plane.

A simplified version more suited for the latest modern graphics hardware is
described below, along with an illustration in Fig. 3.9:

• Step 1 — Ray entry point determination — The front faces of a
volume bounding box are rendered into a 2D RGB texture, with the same
size as the current viewport. Each color value is set to contain the 3D
texture coordinates of the surface of the box. The result is a texture where
each color value represents the first intersection point between the rays
being cast, and the volume data. The values themselves are represented
in coordinate space. The collision points for each ray with the proxy
geometry is visualized in Fig. 3.9 (B).

• Step 2 — Ray direction determination — Similar to the first step,
the backfaces are now rendered into a 2D RGB texture, with the same
size as the current viewpoint. The collision points for each ray with the
backfaces of the proxy geometry is visualized in Fig. 3.9 (C). Given the
start and end point of each ray, calculating the direction of the ray is a
simple matter of mathematical subtraction.

• Step 3 — Ray traversal — Having both the ray starting point and
direction available, each ray is traced either until the end point of the ray
is reached, or until the complete color of the related pixel is determined.

Using modern graphics hardware, supporting basic control flow, this entire pro-
cess can be completed in two isolated rendering passes. One rendering the front

26 Volume Data

3D Application
or Game

3D API:
OpenGL

or Direct3D

GPU
Front End

Primitive
Assembly

Programmable
Vertex

Processor

Rasterization
&

Interpolation

Raster
Operations

Programmable
Fragment
Processor

Frame
Buffer

GPUCPU

Figure 3.8: A simplified flowchart of the modern day graphics rendering pipeline.

of the volume bounding box, and another rendering the backside and iterating
each ray from start to finish.

This style of direct volume rendering using the GPU is similar to general pur-
pose programming, since the rendering pipeline is only used as a means to
program the on-board fragment shaders. This somewhat unorthodox use of the
graphics hardware leads to a few visual artifacts and caveats. Most of these are
insignificant, except for proxy geometry clipping.

Prior to rasterizing the proxy geometry used in direct volume rendering in the
graphics pipeline, visualized in Fig. 3.8, the geometry is clipped against two
planes to prevent drawing unnecessary geometry. The front and back clipping
plane, specifically. The only real concern for clipping the proxy geometry is the
front plane, since it is conceivable that we would like to view the volume up
close. If the proxy geometry is clipped, the shader will not be activated for any
pixels and the volume data will not be rendered.

Fortunately, a simple yet effective change to the existing algorithm fixes this
particular issue. Simply by filling the ray entry point texture with the eye
position, before rendering the front faces into it. This will allow the near clipping
plane to cut through the geometry and still visualize the volume. If the back

3.2 Rendering 27

(A) (B) (C)

Figure 3.9: An illustration of how the approach described by Krüger and Wester-
mann [65] uses a volume bounding box to perform ray casting on the programmable
fragment processor. (A) A scene containing an image plane, along with a imaginary
view rays and a volume bounding box. (B) The front side of the volume bounding box
is highlighted to note how each of the imaginative rays cross the front face before (C)
crossing the backside of our volume bounding box.

faces of the volume bounding box are clipped by the viewing plane, we would
be looking past the volume and should not render anything regardless.

3.2.1 Transfer Functions

A question which has been left unaddressed so far, is how to determine the
actual color of the volume data to render. Volume data does not contain any
appearance modelling information, so the density value on its own is for all
intents and purposes useless in deciphering the original color value. In most
cases, the color is derived from pre-existing knowledge regarding the volume
itself. Knowing that the volume data represents a pig carcass, it is possible to
make accurate assumptions about which color should be associated with which
density value (i.e. tissue type). Mapping voxel intensities from one domain
(R) to values used for visualization in another domain (R4) is typically called a
transfer function [44].

Classifying types of transfer functions is not straight forward, as the approaches
are almost as varied as the data they seek to enhance. The itemized list below
categorize the more notable approaches by the most defining characteristic of
each of the methods:

• Linear transfer function — The simplest transfer function simply maps
a single density value (R) to color values consisting of red, green, blue and

28 Volume Data

occasionally an additional value for transparency.

• User input based transfer function — The user based transfer func-
tion is similar to the linear transfer function, except that it allows a user
to interactively modify the color values associated with various density
values. This is useful for a number of volume visualizations where the
densities of interest are not known in advance. Chourasia and Schulze [23]
present an interface using opacity weighted histograms allowing the user
to easily define transfer functions for high dynamic range data.

It is important to emphasize that the usefulness of a user based transfer
function is highly dependent upon the volume data being visualized and
the methods used for proper segmentation. If the volume data is easily
segmented using density thresholds, then the user can easily select areas
of interest. Otherwise, more advanced techniques are required to separate
areas of interest, such as interactive volume annotation.

An example of semi-user input based transfer function is the visible human
project [7], where a human carcass was cut into slices and photographed
providing a 1-to-1 mapping of volume location and appearance.

• Texture enhanced — By using a piecewise constant function, it is pos-
sible to map a density value and voxel location directly to a texture best
representing that density value. In order to provide the best visual ap-
pearance, the texture must be repeatable and conform to the dimensions
of the volume data.

• Texture based — Volume data extracted from real world objects will
often exhibit detectable patterns. Caban et al. [19] present a method
for generating appearance information based on the texture surrounding
a given voxel.

• Wang Cubes — Wang cubes [79] are an extension on an existing texture
generation method called wang tiles [119, 120]. Ebert et al. [79] provide
a framework for creating a large variety of non periodic illustrative 3D
patterns and texture for use during volume visualization. The approach
uses 8× 8× 8 sized cubes stitched together according to a set of spatially
oriented rules along with user input.

For the purposes of this thesis, a direct mapping between volume location and
appearance information, similar to the visible human project [7], would be ideal.
Especially given the availability of pig carcasses and the high interest in a rep-
resentative volume. However, this type of mapping is very time consuming and
beyond the scope of this thesis. At the time of writing, the only 1-to-1 mapping
in existence for animals is for dogs [18].

3.2 Rendering 29

Another appealing alternative would be the wang cubes, however given the small
dimensions of the cubes involved in reconstructing the texture, it is questionable
how well the results would recreate actual pig tissue.

In this work a texture enhanced approach was chosen to yield appearance infor-
mation to the volume data representing pig carcasses. Specifically, a piece-wise
linear function mapping density values to volumetric tissue textures.

It is worth noting that a persisting problem within volume rendering, is the
surface density gradient. Regardless of the actual surface density of the object
measured, interpolation will cause gradient based artifacts, e.g. muscle tissue
appearing as skin. An example of this shown in Fig. 3.10.

Figure 3.10: A screenshot of directly rendered volume data, using linear interpola-
tion. This produces visual artifacts on the surface, giving the appearance of skin on
the topside surface of the pig, when it actually consists of muscle and bone.

Tiede et al. [114] presents a more complex volume rendering approach, which
calculates volume intersection more accurately and eliminates this visual arti-
fact. Although the proper coloring of the pig carcass surface is relevant for the
initial visual impression, it is of minor significance in the scope of this thesis for
two reasons. First, realistic depiction of the pig carcasses internal anatomy is
of prime importance. Second, the shape of the pig surface offers a significant
amount of landmarks with which to properly recognize muscle and bone. There-
fore, the visualized pig carcass in this work retains the appeareance of skin on
the surface.

The developed transfer function is applied to muscle, fat and bone tissue. As
previously mentioned, these textures need to conform to the same dimensionality
as the volume data, i.e. three dimensions. Due to the lack of pre-existing volu-
metric textures of this kind, the problem is solved via synthesis. The following
section presents a general introduction to notable texture synthesis approaches

30 Volume Data

and forms the basis for the contribution of this thesis to the field, presented in
Chapter 8 and 9.

3.3 Texture Synthesis

Texture synthesis is the process of algorithmically creating a larger digital image
based on a small user defined input sample. The areas of application are wide
within computer graphics, and it therefore comes as no surprise that there is a
significant amount of pre-existing research in this area.

Regardless of the approach or method applied the overall goal is the same.
Given a small texture, we wish to generate a larger version. This task is made
considerably more difficult by the fact that, not only does the larger version
have to resemble the small sample, but it also has to avoid containing unsightly
seams and reduce noticeable periodicity.

Textures are often divided into two categories: deterministic, and stochastic.
Deterministic textures consist of a set of primitives along with a fixed spatial
distribution (e.g., a brick wall). Stochastic textures are sporadic in nature and
do not consist of easily identifiable primitives (e.g., bark, marble, sand). Real-
world textures often consist of a combination of the two (e.g., woven fabric,
wood boards, cobble stone).

A number of texture synthesis methods, categorized by the overall applied ap-
proach, is listed below:

• Parametric — Parametric approaches assume a certain distribution, of-
ten Gaussian, and generate textures based on this prior knowledge. Heeger
and Bergen [52] present a method targeted at synthesizing stochastic tex-
tures.

• Non-Parametric — Non-parametric approaches do not assume any pre-
existing distribution, but instead analyze the existing structure of the
provided user input to determine and re-create a similar structure in the
synthesized result. De Bonet [27] presents a method with which the orig-
inal texture is analyzed, and based on the detected structure a larger
version synthesized.

• Pixel Based — Pixel based methods are similar to non-parametric ap-
proaches in the sense that they also analyze structure, but in a more
indirect fashion. The synthesized result is created by successively adding

3.3 Texture Synthesis 31

new pixels based on surrounding neighbors. Wei and Levoy [127] apply
a Markov Random Field as a structural element in their algorithm, while
Harrison [51] uses an alternate approach, more focused on reproducing
local spatial structure.

• Patch Based — Patch based methods apply the general principle behind
pixel based methods on a grander scale. Instead of simply having one
pixel’s value determined by its neighbors, patch based approaches insert
bigger sections of the original sample in an effort to successfully reproduce
all the features found. Kwatra et al. [67] present an approach which
determines the optimal portion of the original sample image to insert given
a location in the image being synthesized.

• Optimization Based — Kwatra et al. [66] present an optimization based
approach, that iteratively alters the composition of the synthesized tex-
ture. Starting from a random selection of pixels from the users input
texture, the synthesized texture is divided up into several axis-aligned
neighborhoods. Each neighborhood in the synthesized texture finds its
best corresponding match in the original input texture, and the texture is
iteratively changed to look more like these best-fit neighborhoods.

As stated in Section 3.2.1, the textures of the various types of pig tissue required
for the creation of a customized transfer function must correspond to the di-
mensionality of the volumetric data. Although some of the methods presented
above lend themselves to solid texture synthesis [52], the above cited research
primarily attempts at recreating two dimensional textures. Within the past two
decades, there has been a push toward 3D texture synthesis, based on many of
the aforementioned approaches:

• Parametric — Ghazanfarpour and Dischler [39] present an approach
which utilizes spectral analysis on a 2D user input sample, and extracts
parameters for the purposes of generating solid textures.

• Non-Parametric — Wei [123] generalizes the approach based partially
on Markov Random Fields to generate 3D textures.

• Stereological — Jagnow et al. [56] apply traditional stereological meth-
ods, concerned with extracting quantative information about 3D material
from 2D samples, to generate solid textures.

• Optimization Based — Kopf et al. [63] expand upon the work pioneered
by Kwatra et al. [66] by generalizing it to three dimensions. By comparing
texture patches on axis aligned slices and accelerating the process, the
method synthesizes plausible solid textures based on 2D input.

32 Volume Data

Out of aforementioned approaches, the texture optimization proved the most
promising, which we have adapted for generating solid textures based on pig
tissue.

A thorough presentation of this method as well as its specific application to pig
carcasses is presented in Chapter 8.

3.4 GPU Accelerated Volume Cutting

During the development process of the PPP prototype interface, various cutting
approaches were considered for viability in regards to direct volume rendering
on the GPU. As previously explained in Section 3.2, direct volume rendering
relies on proxy geometry to make heavy use of GPU shaders in order to achieve
impressive visuals at real-time speed. Therefore, imposing cuts on the proxy
geometry, would effectively impose the same cuts to the volumetric data.

At this point it is prudent to differentiate between incision-style cuts and com-
plete cuts. Bruyns et al. [17] present a large body of work concerned with
making custom incisions, that could be expanded to complete cuts, in polygon
meshes. However, the polygon mesh (i.e. proxy geometry) used to render the
volume data exists only as technical necessity to make use of a GPUs shader
cores. Therefore, incisions imposed upon it would not work as intended. The
incisions would effectively be applied to the surrounding proxy geometry and
not the pig carcass volume data.

An appealing alternative is constructive solid geometry (CSG). It offers the
flexibility of performing logical operations, reminiscent of set theory, to geo-
metric shapes. It allows the subtraction of geometric shapes from the proxy
geometry surrounding the volume data, and would result in correctly rendered
visuals. Bernstein and Fussel [13] present a novel approach that overcomes the
issues of calculation complexity and robustness that have normally plagued CSG
algorithms. However, the high flexibility is not essential to the type of cuts pri-
oritized for the PPP interfaces. Fully customized cutting can be achieved quite
efficiently on volumetric data without the need for complex mesh partitioning
algorithms, as detailed at the end of this section.

A viable compromise is the CSG algorithm presented by Stewart [110], which
performs the intersecting calculations directly on the graphics hardware in image
space. This means that the mesh is never actually partitioned or altered in any
way, instead, each pixel has its depth set to the proper depth by the intersection
geometric shapes. This effectively sidesteps the issue of robustness normally

3.4 GPU Accelerated Volume Cutting 33

plaguing CSG algorithms.

Figure 3.11 shows the algorithm intersecting the proxy geometry (in red), with
two blue squares.

Figure 3.11: The frontfaces of the proxy geometry surrounding the pig carcass visu-
alized in bright red, intersected by two smaller blue cubes.

Unfortunately, the algorithm (aptly named sequenced convex subtraction) was
never intended to properly intersect concave objects, such as the backface of the
proxy geometry, which results in artifacts as visualized in Fig. 3.12.

Modifications to the algorithm allowed it to produce proper results under certain
conditions, but not all of the possible intersections using concave objects could
be solved using the flexibility provided by the GPU to intersect objects in image
space.

By simplifying the intersecting geometry to planes, the intersection algorithm
could be implemented directly on the GPU rendering the pig carcass volume.
The ability to represent individual planes using only four numbers: a three
dimensional normal and one distance scalar, allows for the geometry to be easily
handled on the GPU. Fig. 3.13 illustrates this representation of two different
planes.

By calculating intersections of each of the rays required to visualize the volume,

34 Volume Data

Figure 3.12: The backfaces of the proxy geometry surrounding the pig carcass visu-
alized in bright red, intersected by a single small blue cube. On the left, a modified
sequenced convex subtraction algorithm correctly produces the intersection between
the two objects. On the right, a failure case missing partial geometry.

described in Section 3.2, with the introduced cut planes, it is relatively straight
forward to only render the remaining volume, while optimizing the rendering
process.

For optimal performance, it is necessary to recompile the shader programs ex-
ecuting in the GPU in real-time, for every cutting plane introduced. A shader
optimized version of a standard line-plane intersection algorithm [130] is used to
determine the start and ending point of each of the rays traversing the volume.

In addition to the planar cuts, a binary mask is applied to the volume which
allows the user to cut individual voxels. This functionality allows for completely
customizable cuts, but was not prioritized for the primary interactive function-
ality provided by the PPP. It is also important to note that providing custom
cutting control to the user is, at best, a questionable design choice. This topic
is further explored in Chapter 5.

3.5 Haptic Rendering

Haptic refers to the sensation of touching, and is arguably the third most used
of the classical human senses, in computer applications. With its origins in avi-
ation history, with a vibrating flight-stick alerting the pilot of an oncoming stall,
it has found stable ground in the video game industry [20]. It was widely popu-
larized by Sony’s Playstation Dualshock R© Controller, as well as several driving
and flying simulation input devices. Although it has yet to be adopted as a
standard in the medical industry, recent research [14] indicates that operational
procedures stand to benefit from its application.

3.5 Haptic Rendering 35

X

Y

Z

Figure 3.13: A visualization of two planes represented via a scalar applied to the
planes normal, yielding its final location and orientation in world space.

Given the already significant load of information levied on the users two primary
senses, sight and hearing, it is not surprising that there is a high interest in
leveraging information on an alternate sense. This motivation has lead to the
development of haptic devices such as the Phantom Omni [94], visualized in Fig.
3.14, the same controller utilized during the development of this thesis.

The common senses humans posses, are sensitive to different frequencies of in-
put. For example, images changing at a frequency of 24 hz, is enough to convince
the human eye that the visual input is animated, rather than static. Haptic feed-
back, on the other hand, requires a much higher frequency to maintain sensable
stability for humans. The update frequency required for proper universal haptic
feedback is often set to 1000 hz [76]. That is, the force feedback provided by
the haptic device (such as the Phantom Omni) has to be calculated and applied
1000 times during a single second in order for users not to feel a significant
discontinuity. Thus, any algorithm intended for haptic device rendering must
often conform to this real-time 1000 hz standard.

As established earlier in this thesis, the data we are interested in interacting
with, consists of volumetric data from a CT scan of a real pig carcass. A number
of approaches exist for the purposes of haptically interacting with volume data.
In broad terms, they can be categorized into the following groups:

• Alternate Proxy Representation — Although not a method of di-
rectly interacting with volume data, it is still important to present the

36 Volume Data

Figure 3.14: The Phatom Omni haptic feedback device c© Copyright Sensable Tech-
nologies, Inc. Provides the user with six degrees of freedom, and is capable of giving
haptic feedback on three of the six axes. The input device also features two buttons
on the pen. Photo used with permission from Sensable Technologies, Inc.

possibility of converting the current representation of data into another
viable alternative, such as a polygon mesh, using a mesh generation algo-
rithm (e.g. marching cubes algorithm [78]). The advantage of a mesh is
that the surface is well defined and the Phantom Omnis API [55] natively
supports mesh based haptic interaction.

• Direct — A direct representation of the input device is used as a basis
for interacting with volume data. Petersik et al. [98] partially base their
haptic rendering algorithm on this approach, where multiple sample points
on the surface of the virtual representation of the tool are used to calculate
the forces acting on it. Figure 3.15 illustrates an example of this force
calculation.

• Indirect — The forces imposed upon the haptic feedback device are gen-
erated indirectly by using a proxy object. The actual haptic feed back
device cursor position, is referred to as HIP (Haptic Interaction Point),
and travels freely within and out of the virtual objects. A proxy ob-
ject, referred to as VHIP (Virtual Haptic Interaction Point), is subject to
the constraints provided by the various interactable objects in the virtual
scene. The difference in position between the VHIP and HIP form the ba-

3.5 Haptic Rendering 37

sis for the force enacted upon the haptic feedback device. An illustration
of this concept is provided in Fig. 3.15.

Palmerius [95] presents extensive work within the field of generating haptic
feedback from volumetric data, and differentiates further between various types
of haptic interaction algorithms.

Volume Data

Tool

Resulting
Direction
Vector

f1 f2

f3

f1

f2

f3

f0

Volume Data

Sensing Point - No collision

Sensing Point - Collision

VHIP - Collides with virtual objects in scene

HIP - Real world position of haptic device

Resulting
Direction
Vector

f0

f0

Figure 3.15: A visual illustration of two different approaches for calculating haptic
feedback based on volume data. On the left, the direct method comprised of several
sensory points which together yield a complete directional force vector. On the right
the more indirect method of having a proxy object interact with the virtual volume
and deriving a force vector between the difference in location of the ”real” and the
proxy object.

Since the cutting algorithm detailed in the previous section acts upon the volume
data directly, it would be counter productive to implement a haptic rendering
algorithm that requires a mesh representation.

The aforementioned direct approach could potentially yield the most realistic
haptic feedback, assuming that multiple sense points on a tool representing the
real-world pen on the Phantom Omni, would generate the resulting force direc-
tion. However, the Phantom Omni only provides haptic feedback on three of
the six degrees of freedom offered by the Phantom Omni. Therefore, this direct
style of haptic feedback using multiple sense points is unnecessarily complex for
the type of force feedback the Phantom Omni is capable of providing.

Indirect rendering is well suited for the type of haptic feedback the Phantom
Omni is capable of simulating. Notable works within indirect haptic rendering
algorithms include, as previously noted, Palmerius [95] who provides a thorough
in-depth analysis of haptic rendering using proxy objects. Menelas et al. [85]
present a novel algorithm for rendering haptic feedback based on high frequency

38 Volume Data

volume data.

However, the complexity of both these algorithms are unnecessary given the
relatively well defined low-frequency isosurface of the pig carcass. Chen et al.
present a straight-forward algorithm based on intermediate isosurface represen-
tation [21]. A general introduction to the haptic rendering algorithm used for
the PPP, based on the approach by Chen at al., is presented in the following
subsection.

3.5.1 Isosurface Haptic Rendering

As briefly explained in the previous section, the direct haptic rendering method
relies on a set of points, VHIP and HIP to describe the haptic feedback generated
by the volumetric data. The location of the HIP always corresponds to the actual
input position of the input device, which in the case of this thesis, is the input
position of the Phantom Omni. The VHIP attempts to locate itself at the same
location as the HIP, but is constrained by the volumetric data present in the
scene.

By constraining the VHIP through collisions with objects rendered in the scene,
it is possible to use a spring force, calculated in between the VHIP and HIP, as
haptic feedback.

There are four different scenarios as far as the position of the VHIP and HIP
are concerned, in relation to the volumetric data:

• HIP outside of volume, VHIP outside of volume — If the HIP is lo-
cated outside of any volume data, determined by the isosurface threshold,
then the VHIP should be set to the same location.

• HIP outside of volume, VHIP inside of volume — This is usually
the scenario that occurs briefly after the HIP has any area occupied by
the the volume data. Like the scenario above, the VHIP should be set to
the same location as the HIP.

• HIP inside of volume, VHIP outside of volume — This scenario
occurs when the user begins interacting with the volume. In this case the
isosurface in between the VHIP and HIP is estimated, upon which the
VHIP is then placed.

• HIP inside of volume, VHIP inside of volume — Given a volume
with a well defined low frequency isosurface, this scenario rarely occurs.

3.5 Haptic Rendering 39

If it does, it’s possible to either seek the nearest surface for the VHIP to
relocate to, or leave the behavior undefined.

The four scenarios described are implemented and illustrated via the psue-
docode, shown in the listings box 3.1. As the code illustrates, the fourth scenario
is left undefined as it practically never occurs given the pig carcass used in the
PPP.

Listing 3.1: Surface Interaction Heuristic

if (VHIP.is on surface) {
if (density at location(HIP) ≤ isolevel density threshold) {

VHIP.is on surface = false;
} else {
VHIP.is on surface = true;

}
} else {

if (density at location(HIP) > isolevel density threshold &&
density at location(VHIP) ≤ isolevel density threshold) {

VHIP.position = estimate isosurface between(HIP, VHIP);
VHIP.is on surface = true;

}
}

If the VHIP is determined to be on the surface of the volume data (according
to the third scenario), then it is necessary to perform some additional steps, in
order to allow it to move along the isosurface. A simple technique employed by a
number of haptic rendering algorithms is to use an intermediate representation,
such as a plane, to move the VHIP along. The plane is defined using the
current location of the VHIP, and the isosurface gradient of the volume data as
its normal.

Figure 3.16 illustrates this approach. A virtual surface plane is estimated, upon
which the vector from the VHIP to the HIP is projected. The VHIP is then
moved a small increment along that vector. Moving the VHIP risks it leaving
the isosurface, so we have to determine whether or not the VHIP has moved
beyond the level of tolerance in regards to the isosurface. Since the isosurface
of the pig carcass is relatively well defined, we can iteratively move the VHIP
closer until it is on the isosurface. The pseudo code for this procedure is shown
in listings 3.2.

Listing 3.2: Surface Movement Heuristic

if (VHIP.is on surface) {
vec3 VHIP to HIP surfaceVector = estimate isosurface vector(←↩

↪→ HIP, VHIP);

40 Volume Data

VHIP

HIP

Surface Normal

Virtual Surface Plane

Direction Vector

Virtual Surface Plane Projected Direction Vector

Figure 3.16: An illustration of the estimation of a virtual plane along the isosurface
of spherical shaped volume data. The VHIP is positioned on the surface of the volume,
while the HIP is inside the volume itself. The normal of the volume data at the location
of the VHIP is estimated, yielding the gradient of the plane. The vector in between
the VHIP and HIP is projected onto the virtual plane and used for a small incremental
movement of the VHIP.

VHIP.position = VHIP.position + VHIP to HIP surfaceVector;

// If VHIP has moved too far from the isosurface
if (density at location(VHIP) ≥ ←↩

↪→ isolevel density distance tolerance) {

vec3 surfaceGradient = estimate surface gradient(VHIP);

// Is VHIP too deep or too shallow?
if (density at location(VHIP) < isolevel density threshold←↩

↪→) {
// Too shallow

for (int i = 0; i < 100; ++i) {
VHIP −= 2.0 ∗ isolevel density distance tolerance ←↩

↪→ ∗ surfaceGradient;

if (density at location(VHIP) > ←↩
↪→ isolevel density threshold)
break;

}

} else {
// Too deep

3.5 Haptic Rendering 41

for (int i = 0; i < 100; ++i) {
VHIP += 2.0 ∗ isolevel density distance tolerance ←↩

↪→ ∗ surfaceGradient;

if (density at location(VHIP) < ←↩
↪→ isolevel density threshold)
break;

}

}
}

} else {
VHIP.position = HIP.position;

}

Expanding the algorithm to also perform properly when creating planar cuts
through the volume data, is relatively straight forward. The density at location

function referenced in the pseudo code, is modified to return a density corre-
sponding to air, if the HIP is located on the ”cut” side of any planar cuts. The
function returns a steady gradient aligned with the plane, so the isosurface is
established to be exactly on the visual plane, allowing the user to feel the planar
surface of the cut volume.

Having established the proper position of the VHIP and HIP for haptic render-
ing, it is straightforward to calculate the spring force to apply:

springForce = gain ∗ (V HIP −HIP) (3.1)

The equation yields a force vector directly applicable to the haptic feedback
device, allowing for quick, simple, and direct haptic feedback.

42 Volume Data

Chapter 4

Human Computer Interaction

As the term Human-computer interaction (HCI) indicates, it is all about the
interaction between people and computers. HCI is an intersection of several
different fields of study, for the purposes of establishing best practices and stan-
dards in shaping and designing the interaction between people and computers.
The term also embodies the evaluation of the resulting interfaces and inter-
action patterns established by these practices. In relation to this thesis, HCI
obviously plays a significant role given its focus on interaction. Both the design
and evaluation of the PPP interface is firmly within the realm of HCI.

Section 4.1 gives an abstract introduction to design considerations and interfaces
in general. The remaining sections describe key principles behind formative
usability testing, as well as the usability study conducted in association with
the completed prototype interface. The study describes the entire process from
initial planning and information gathering, to selected metrics, as well as the
measured results.

44 Human Computer Interaction

4.1 Interface Design

Interface design is communication design. Its existence is not restricted to re-
side between man and machine, but also in between people. The existing inter-
human interface of visual and audial cues has evolved over thousands of years
and would arguably be impossible to replace. Interfaces in between computers
are often invisible as communication occurs with little or no visual or audial
cues whatsoever. But despite the lack of these tells, communication exists re-
gardless. The point is, communication is everywhere, and by a broad definition,
so are interfaces. The PPP interface crosses the boundary between humans and
computers, which is therefore the focus of interface design in this thesis.

An often reoccurring term in relation to interfaces is ’transparency’. The term
often relates to the ease of communication in-between the two parties facilitat-
ing the communication. In a sense, it conveys the notion that the interface is
actually a barrier and the less we notice it when communicating with the other
party, the better. While this might be true in theory, it would require that both
parties to be able to interpret each others responses and intentions perfectly. In
practice between man and machine, it would require the machine to read and
interpret man’s intention without exchanging a word. Effectively requiring the
machine to read minds. While fascinating in principle, this concept is currently
beyond the grasp of human ingenuity and we are forced to examine the situation
where an interface is more opaque than transparent.

Having established that a discernible interface is unavoidable, we must strive
to implement the best interface possible. But what makes a good interface?
In abstract terms, it is an interface that enables the user to reach his intended
goal as fast, and easy, as possible. Usually, the user will have a general idea of
what it is they wish to accomplish which becomes clearer the more they work
towards it. The interface should provide the best tools, allowing the users to
take actions, which move them closer to their perceived goal. When designing
these tools it’s important to understand that every design choice carries an as-
sociated benefit and cost. For example, when designing a new interface button,
text will serve to minimize ambiguity, but has to be read to be understood; a
graphical button is easy to recognize and aesthetically pleasing, but might be
ambiguous in meaning at first. To complicate matters even further, this ben-
efit and cost varies across many fields including cognitive psychology, human
behavior, and graphic design. The actual benefit and costs are only determined
in relation to alternative solutions. One potential solution might seem bad at
first, but if it’s better than all the other worse solutions, then it’s still the best
choice. The real list of factors that a design decision depends on can seem ex-
ponentially large. In practice, the problem is usually approached by following a
number of design heuristics, previous experience, and a trial and error approach.

4.2 Usability Study 45

The choices that make up the final interface are very context dependent. An
interface ideal for 2D graphics design might be completely unsuitable for 3D
modeling and vice versa. But context dependency reaches far deeper than one
might expect. The tools provided by the interface are custom made to fit the
context, but the way the tools behave is also heavily context based. Specifically,
the freedoms and constraints built into each tool. For example, the rectangular
area selection tool from a graphics program often provides a constraint to allow
the user to create a square instead of a rectangle. Symmetry holds a special
place in graphics design and the interface restricts the user to only drawing sym-
metric objects if need be. The correct design of these freedoms and constraints
go a long way to helping the user reach their intended goal while minimizing
mistakes and avoiding unfeasible actions.

The perfect interface would allow every user to achieve their goal quickly and
efficiently and leave every single one of them thoroughly satisfied. This is im-
possible. Not only because each person is different, and has different preferences
as well as a different experience history, but also because each person usually
wishes to accomplish something different given the interface provided. The last
detail is particularly vexing when designing an interface since it crosses the bor-
der between interface and feature design. It is up to the designer to determine
which features an interface will support and why. The design of an interface
always starts with a need to fulfill a creative demand. Once the goal becomes
clear, the interface design can commence. The design and inclusion of specific
tools then rely on the requirements and constraints of the creative demand that
is to be sated.

This process and associated topics is the focus of the remaining sections in this
chapter. The details are presented as part of a usability study conducted on the
PPP interface, explaining the relevant theory and its application.

4.2 Usability Study

Usability is the focus of interaction with a given product, and the ability of the
user to achieve specified goals with effectiveness, efficiency and satisfaction [115].
While the first two aspects — effectiveness and efficiency — are immediately
recognized as critical for successful interaction, the latter is less so. It is not
hard to argue that if the user cannot efficiently achieve the specified goal with
a high degree of effectiveness, then the product is unsuccessful. But why does
satisfaction matter?

46 Human Computer Interaction

Satisfaction is key to motivating the user to continuously interact with a given
product. It might seem counterintuitive at first, but there is no guarantee that
satisfaction goes hand in hand with effectiveness and efficiency [115]. There is
however, no doubt as to the results when it does. One of the best examples
of a consumer product where satisfaction is at least as high as its effectiveness
and efficiency, is arguably Apple’s iPhone. While competing products offer
comparable effectiveness and efficiency at lower prices, the user satisfaction is
much higher with the iPhone [100]. In a sense it’s almost better to have the
unlikely combination of an inefficient and ineffective product that still results
in satisfactory user experience, instead of an efficient and effective product that
leaves users unsatisfied. All the efficiency and effectiveness in the world won’t
matter if your users refuse to use your product, and in the end, what comes first
is the users willingness to use the product.

Effectiveness and efficiency are, of course, still of vital importance, and by ex-
tension; Usability as a whole. If there was ever any doubt to the importance
of usability, one need look no further than studies involving medical interfaces.
Jakob Nielsen [93] notes a medical study [64] within which 22 separate usability
issues caused fatal mistakes to occur. Some of these issues were well documented
in advance and theoretically did not require any specific testing to reveal.

As machines and computer continue their integration into daily use, the neces-
sity and significance of proper usability testing becomes more and more impor-
tant [115]. Usability testing is no longer just an added bonus, but can become
the deciding factor for whether a given product fails in the task that it has been
designed to do.

The PPP interface has been designed for the purpose of being integrated into a
non-standardized communication process. The interface is motivated in part by
the Danish pig meat industry and their increasing effort in optimizing product
development efficiency, due to the ever competitive nature of the global meat
market. The interface has been developed in collaboration with DMRI [28] and
with assistance from Danish Crown [26].

The PPP interface was designed to accept input both from a typical mouse
and keyboard combination, as well as a haptic feedback device. Each of these
interface types will be analyzed in the comparative study. The intended user
group is sales personnel with a pre-existing knowledge of pig product production
standards. A cross section of sales personnel from Danish Crown volunteered
to participate in the conducted study.

4.3 Overview 47

4.3 Overview

Each of the following Sections are divided into two segments. The first present-
ing relevant theory, and the second describing the application of said theory to
the PPP interface to be examined in this thesis. The theory is presented more
or less chronologically in the order it would be applied in a given usability study.

The following section details the critical aspects of planning and information
gathering necessary, prior to any other steps in a usability study. Another early
part of any usability study is selecting the optimal test participants, and is
discussed in Section 4.5. Notable metrics often used in conjunction with user
testing is described in Section 4.6, as well as potential pitfalls during appli-
cation. Pilot studies conducted prior to the usability test and the resulting
changes are detailed in Section 4.7.2. In Section 4.7 the actual usability test
is described along with important details to consider in order to ensure clean
data. Perspectives and conclusions are noted in the final section.

The DVD accompanying the thesis contains a compilation of the raw data gath-
ered during both the pilot studies and the usability tests. Specifically, recorded
video and audio, along with interaction logs generated by the PPP.

4.4 Planning and Information Gathering

Usability testing exists in many forms, from small informal in-house testing, to
large formal external testing. But even with the smallest and most informal of
testing scenarios, it is still useful to perform some basic planning, in order to
maintain a good overview and control of the testing process. One of the main
goals of planning ahead, is determining what to actually test for in the usability
study. While certain issues will become apparent regardless of planning, a num-
ber of usability issues will remain elusive unless there is a proper focus achieved
through proper planning. The optimal testing parameters, such as size, loca-
tion, and number of participants, often relies on a number of factors, such as
state of product development, availability of testing participants, availability of
testing equipment, and so forth. Therefore, it is, in general, a good idea to plan
the process.

The goals of the usability study will help define what type of metrics to choose
in order to evaluate whether the test was a success or not. In fact, the entire
method of evaluation might depend on what the end goal of the study turns out
to be. Goals do not have to be defined down to the last detail, but the more

48 Human Computer Interaction

specific they are, the easier it is to choose the appropriate metric to ensure
success.

In general, there are two types of usability studies [101, 115]:

• Formative Study — This type of study is conducted during the devel-
opment stages of a product, when the design specifications are not final
and features are still being added or modified. The goal of the study is to
identify key usability issues and make recommendations to alleviate them.
For example, what is keeping the users from achieving their goal while
using the product, or, which aspects of the product are frustrating to use,
or causes the user to make errors.

It is not uncommon to perform multiple formative studies during develop-
ment at regular intervals to ensure that precious resources are not being
wasted on features the users find cumbersome or even superfluous.

• Summative Study — A summative study is usually performed at the
end of product development, when the final design has been locked down
and the product is ready to ship. This type of study is intended to identify
whether or not the product lives up to the requirements established at the
beginning of development. Competitive products are often included in the
summative study as well as previous versions to better compare strong and
weak aspects.

Although this type of study is usually performed at the end of a product
development cycle, the results should still be used for the purposes of
improving the product. Evaluating the product without the intention for
further improvement has little value.

Regardless of which type of study one commits to performing, it is vital to
gather some preliminary information prior to any actual testing. Knowing what
matters to the user, along with other relevant information, such as how often
the user will be working with the product, is critical in shaping the usability
study. With this knowledge in hand, it is possible to create real-world tasks
that the user has to complete using the product. Having the user complete
these tasks and applying various usability metrics will yield valuable data and
reveal concrete usability issues related to them.

Apart from the significance of finding usability issues related directly to real-
world tasks, they also help increase the users level of engagement in the testing
scenario. If the tasks presented to the user are unrealistic and seems unlikely
to ever happen in a real-world setting, then the participant is more likely to
dismiss the test as a waste of time.

4.4 Planning and Information Gathering 49

The easiest way of gathering this information is by communicating directly
with the users of a similar product, or the potential users of the product being
developed that has yet to exist on the market. If the interface being designed
has been contracted by a company, it is likely that the actual users are the last
in a long line of people you communicate with, due to the modern company
hierarchy. Since the people at the top carry the responsibility of managing the
development and integration a new product, they are also the first to discuss
the matter. It is vital to note that what these people feel are crucial features
and important aspects of the product design might vary greatly from what the
actual users feel are crucial features and important aspects. I cannot overstate
the importance of communicating directly with actual users of a similar product,
if these people exist. If the product is an iterative design or intended to replace
a current product, it is useful to observe the users in their natural environment
using the product. Humans are not known for their precise memory, and if
you only rely on interviews to determine how users interact with the current
product, you are destined to only receive half the story. It is also important to
emphasize the fact, that people will rarely be able to tell you outright what they
actually need. It is up to you, as the expert, to see what they’re not saying, and
still make the proper decisions.

Another important part of any usability study is when to actually conduct it.
There is no standardized approach, to determine which point in a products
development cycle, is the optimal point in time, at which to conduct the study.
My own personal rule of thumb is, the more often the better. Generally because
developers always tend to test too little rather than too much. That being said,
test results will yield more usable data, if there is a significant new amount
of product to test. In other words, while it might be tempting to perform a
study after every minor design change, it can become difficult to differentiate
between noise and reliable feedback. The key is to strike a balance and test the
product whenever a significant milestone has been reached during development.
Between these milestones, impromptu testing by the developers themselves, is
valuable for finding some of the most obvious usability issues, before subjecting
actual users to the product in question.

Finally, when an actual date, time and plan has been set for the usability study,
it is usually a good idea to perform a pilot study. A pilot study consists of
executing the entire process of testing the software with a single volunteer from
start to finish. It is highly recommended to find a participant close to the user
group without any pre-existing knowledge of the system to be tested. In most
cases, the pilot study will reveal a few unexpected events and issues with the
testing procedure. If the discovered issues require a significant change to the
test procedure itself and/or the system being tested, it is advisable to perform
another pilot study to confirm that no more significant issues arise as a result.

50 Human Computer Interaction

4.4.1 PPP Planning

As a part of the planning phase of the usability study involving the PPP inter-
face, industry experts and staff were interviewed in order to gain insight into
the process of developing new meat products. Due to timing issues and the
fragmented nature of developing new meat products, it was only possible to
interview employees involved in the process, instead of observing the process
directly. The interviews revealed the following main areas of interest for the
PPP:

• Product Reality — A key factor for the success of the PPP is the realism
with which it can depict the anatomy of the pig. The anatomy itself can
almost be described as a cutting blueprint, which experts use as a guide
to properly produce standardized products, despite biological variations
in between pigs. A dynamic 3D pig carcass is only useful, if the same
anatomical aspects of the pig can be recognized by experts, as on a static
photo.

• Factory Reminiscent Cuts — The procedure of slaughtering a pig and
producing consumer products involves a number of steps. In general, the
first half of the procedure is primarily automated using machines, apart
from the actual killing, which has to be done by a certified butcher. The
second half is usually less automated and more done by hand, depending
on how close to a consumer product, the final result is. The cuts committed
by the PPP should correspond to real world applicable cuts, committed
during the process of actual product development.

• Ease of use — Although this is practically a preferred requirement for
any application, the relative ease of use is quite dependent on the intended
target group, and their technical prowess. The target group in this case
consists primarily of the sales staff which has received no formal training
related specifically to the prototyping of meat products, and span a wide
age gap from the mid-twenties to late fifties (24-58).

It is also important to note that ease-of-use is the least easily observable
trait of the three detailed. This is highly relevant, because the integration
of the PPP is motivated by management, and not users. Lack of success
in this area will not be deemed as critical by management as the other
two areas. It is therefore the duty of the designer to be diligent enough to
not let this fact negatively affect the outcome.

As previously mentioned, the PPP is unique as it does not replace an existing
product, but instead is intended to be integrated to support a non-standardized

4.4 Planning and Information Gathering 51

existing work flow. This leads to both advantages and disadvantages, from an
interface design perspective. On one hand, users have not grown accustomed
to a pre-existing interface. On the other hand, lack of standardization can lead
to significant differences in user expectations/wishes. Getting to the bottom
of these expectations and trying to fulfill them will provide the most useful
feedback during usability testing.

Two significant design decisions during development of the PPP to fulfill these
expectations was the use of volumetric data to represent the meat products
realistically, and planar cuts as a good approximation of primary factory product
cutting. A long slaughtering tradition has led to a standardized process where
half a pig carcass is separated into three larger sections using planar cuts, as
visualized in Fig. 4.1. These three parts are called ”foreend”, ”middle”, and
”ham”, from left to right. More specialized products are yielded using additional
planar cuts, or precision cuts along the pigs specific anatomy, such as muscle
membranes or bone structures.

Figure 4.1: Half a pig carcass, following the three division.

The separation of cut styles (planar vs. custom precision) are the result of the
evolution of the production assembly line in slaughterhouses. The incentive to
optimize production has automated as much of the production line as possible,
leaving only the complex cuts to people at the very end.

Early in the design process, the possibility of simulating a real knife was con-
sidered as well as real 3D visualization. The Phantom Omni provides haptic
feedback on three of its six axes, and modern stereoscopic technologies allow
for more realistic 3D visualization than previously possible. Despite the recent
advancements made within both these fields, initial prototyping did not yield
confident results. However, the real deciding factor was the realization that
the complexities and affordances provided by a realistic knife interface did not
properly match the requirements of PPP interface. The simulation of an actual
knife would impose real world restrictions on the interactions afforded by a vir-

52 Human Computer Interaction

tual world, which in turn would tend to inhibit the prototyping process, rather
than accelerate it. A perspective on the next iteration of the tool, providing
this custom interaction, is detailed in Chapter 5.

The Phantom Omni still offers advantages, not available in the more common
input devices, such as the mouse and keyboard combination. The six axis inter-
action allows for the direct correlation between controller movement and virtual
object movement. The traditional mouse interface is less ideal for the manipula-
tion of 3D objects. Yet dispite the advantage of direct translational/rotational
correlation, the Phantom Omni is arguably an exotic interface for most users.
We therefore compare the two, to determine which interface is more usable.

Because a haptic controller is unfamiliar territory, not only to the potential users,
but also the developers, a large amount of informal testing was conducted prior
to planning the first formal external usability study. The informal testing with
non-developers is useful to identify usability issues that have become obscured
to developers due to overuse of the interface.

Some usability issues will only reveal themselves when the interface is tested
with the intended user group, which happens to be the case with the formal
usability study conducted in this project. The formal usability study is best
described as a formative study, since it involves the comparison of two potential
interfaces, leading to comparisons revealing the pros and cons of using either
interface. In addition to the requirements established during interviews with
the experts and staff from the meat industry, some more specific usability goals
were defined as follows:

• Was the user able to re-create existing meat product using both interfaces?

• Which of the two user interfaces did the user prefer? and why?

• What advantages/disadvantages did one interface carry over another, for
the user?

• Which, if any, significant usability issues prevented the user from complet-
ing the tasks provided?

• What aspects of the interfaces worked well, and which were frustrating?

• What were the most frequent errors made by the user during the interac-
tion?

• How was the users perception of usability either interface?

4.5 Test participants 53

Of all the goals listed above, one stands out in particular. The first goal is the
only one that cannot be evaluated properly, without additional expert knowl-
edge. Early in the process we realized that the actual end users do not posses
the expert knowledge required to recreate existing products with a high degree
of accuracy. Regardless of this supposed lack of expertise, we can still only gain
from having a ground truth with which to evaluate the results objectively.

This expert knowledge was collected with the help of factory manager Jesper
Frandsen, at an abattoir owned by Danish Crown [26]. With his aid, a total
of five standardized products were created and recorded for future comparison,
with the PPP. Although Jesper was not the intended target group for the PPP,
his help and interaction proved exceedingly valuable, as described in Section
4.7.3.

The metrics to evaluate how well the remaining goals were satisfied are described
in Section 4.6

The actual structure of the formative usability study is described in Section 4.7.

4.5 Test participants

Any proper usability study will need the support of outside test participants to
provide a perspective not affected by the product development experience. It
is quite common for developers to be blinded to flaws and failures related to
the products they are working on. Rubin and Chisnell [101] note that there is
no better evidence to convince a skeptical developer of usability problems, than
that of a struggling participant.

Although it is always preferable to test a product with its intended target user
group, there are instances where this is not possible. Usually the main cause
for this, is that the intended users are not available in abundance, and/or the
available users have better things to do. Even so, users outside of the specifically
targeted user group are still much more useful than anyone directly connected
to the product. By enlisting the aid of users who are as close to the target user
group as possible, the likelihood is increased that relevant usability issues are
discovered during testing.

If the product is being developed in a collaboration with a company intended for
use by its employees, it is likely that you will have direct access to the intended
target group. In this case, it is important to be wary of only receiving the ”best”
employees for your study. Participation in a usability study will sometimes be

54 Human Computer Interaction

viewed as a reward by company management and will be reserved for the em-
ployees they feel perform the best. Unfortunately, only testing the product with
the ”best and brightest” will be detrimental to the results yielded by the study.
It is crucial that the product is intuitive and easy to use for everybody, especially
users who may not be overly familiar with any similar product. Consequently, it
is important to stress that the users involved in the testing represent the entire
spectrum in both age, gender, competence, experience and any other relevant
categories.

The number of test participants will determine the reliability of the results and
varies depending on whether a formative or summary usability study is being
conducted. For a formative study, 6-8 test participants are usually sufficient for
yielding reliable results [115]. Tullis and Albert [115] suggest at least 50-100
participants when conducting a summary study in order to keep variance low
and generalize the findings for a broader population. Rubin and Chisnell [101]
note that the number of participants is also indirectly determined by the varia-
tion in your user target group. The more widespread a demographic, the more
testers needed to reliably determine usability issues pertaining to each category.

The PPP is intended to primarily be used by sales staff during meetings with
current and prospective clients, while defining specifications for new meat prod-
ucts. Meetings with the staff and management has revealed that the sales per-
sonnel is most easily categorized by age. A younger group aged 24-37 consists
of newer sales personnel with little to no hands-on knowledge of meat handling,
and an older group aged 45-58 with a background more tightly connected to
the abattoir. Both groups are technically proficient with computers and use
the keyboard and mouse on a daily basis. None of them had had any previous
experience with the Phantom Omni or similar 6 degrees of freedom interface,
and neither had any of them have undergone formal training sales training.

A total of 8 volunteers participated in the formative usability study.

4.6 Performance metrics

In this context, metrics refer to a standard of measurment. They enable mea-
suring something objectively. The advantage of applying standardized metrics,
is that two separate individuals applying the same metric produce comparable
results. All fields of research usually have some kind of applicable metric, and
the usability field is no different. Metrics within this field reveal something
about the user experience, such as how easily the user achieved the specified
task, or how satisfied the user was after having completed the task.

4.6 Performance metrics 55

General metrics commonly applied for various purposes during usability studies
include the following:

• Task Success — Simple binary metric for evaluating if the user is able
to solve the specified tasks using the product. In many cases, the actual
result is not nearly as useful as the observations made along side the user
as they complete the tasks.

• Time to Completion — A timed metric detailing the amount of time
a user needs in order to complete a specific task. This metric is a good
indicator of overall efficiency.

• Errors — Certain interfaces might allow the user to commit actions that
nonsensical or essentially a waste of time. Not necessarily due to poor
design, but simply as a result of the inherent flexibility of the interface.
It may be hard to prevent the user from actually performing these useless
actions, but detecting them is easy. By noting how many actions the user
carries out that has no real effect, one can determine whether or not it
might be necessary to change a fundamental part of the interface design.

• Questionnaires — Apart from observing the user directly, this is the
most useful metric to assess their subjective experience of using the prod-
uct. A number of different standardized questionnaires exist, such as
”System Usability Scale” (SUS) [16], ”Software Usability Measurement
Inventory” (SUMI) [60], ”Questionnaire for User Interaction Satisfaction”
(QUIS) [50], and ”Usefulness, Satisfaction, and Ease of use” (USE) [81].
All of these standardized questionnaires are the next best thing to actu-
ally measuring the users response directly during interaction. While the
results are highly subjective, they are also provide useful insight into how
the product is perceived by the user.

Which metrics to apply during a given usability study depends on a number
of factors. The primary deciding factor being the goals set forth prior to the
actual study, since the metrics are crucial for providing the data that complete
the individual goals. Secondary factors include the amount of time available
to conduct the study, number of participants available, as well as the budget
determining what type of equipment can be used during the study itself. Since
the end goals of each usability study will vary significantly, it is impossible to
tell in advance what metrics are going to be useful prior to actually planning
the study without knowing the specifics.

Not knowing precisely which metrics to apply could lead to the tempting sce-
nario of applying as many metrics as possible. Tullis and Albert said it best

56 Human Computer Interaction

when they stated ”There are only so many aspects of the user experience you can
quantify at any one time” [115] (p.296). It is much more fruitful to thoroughly
examine and commit to the most applicable metrics in a given situation. In the
same sense, it is vital not to rely too heavily on a single metric. It is unlikely
to be able to represent the entire user experience, and will lead to missing vital
data.

According to Tullis and Albert [115], when comparing products (or in this case
interfaces), the three recommended metrics are task success measures, efficiency
evaluation, (such as time to completion,) and finally a self-reported satisfac-
tion metric. Therefore, it is not especially surprising that the metrics chosen to
evaluate the PPPs interfaces are as follows:

• Task Success — Since the PPP is arguably at a prototype stage, it is
important to ensure that the tasks it was designed to do are actually
possible. Since the overall goal of the PPP is to aid the communication
process involved in designing a new meat product, a number of tasks will
involve designing a specified product given half a pig carcass.

• Time to Completion — Ease of use is important since the PPP is
intended to be used in a sales scenario. A frustrated user could easy lead
to an annoyed customer, so the application must not hinder the user in
trying to achieve the intended goal. How long it takes for the user to
complete the aforementioned tasks is a good indicator of which interface
is more easy to use.

• Questionnaires — Having completed the specified tasks, the user will be
asked to fill out a custom questionnaire, based on the SUS questionnaire
[16]. It is important to be wary of overly positive feedback. Having never
used a haptic feedback controller, it is not uncommon for users to be
positively biased towards new and intriguing experiences.

In addition to the chosen metrics, we are also interested in revealing as many
usability issues as possible during testing. Therefore, we will also ask the partici-
pants to think aloud during the test to identify issues not automatically revealed
through metrics.

4.7 Formative Usability Study

Once the planning has been completed, the target user group found, and the
metrics decided upon, it is time to prepare the system so that it is test-ready.

4.7 Formative Usability Study 57

If the metrics chosen to evaluate the study with are all clearly observable by
the testing staff, then no modifications are necessary. In most cases however,
the system will need to have a number of additional functions added, such as
logging or resetting.

But, regardless of the changes made to the system, it is always wise to perform
a pilot study before conducting the actual usability test. It’s quite common for
the pilot study to reveal a number of unexpected issues. If the number of issues
found are significant, an additional pilot study should be conducted to ensure
that they have been handled properly.

Once the system is ready for testing and the entire process has been planned out
from greeting the participant to thanking them for their time and sending them
on their way, it’s important to spend some time considering where to conduct
the usability study. The most suitable answer, regardless of the type of study
being conducted, is wherever the user is likely to be most comfortable. The user
should feel at ease and not be distracted or bothered by unfamiliar elements.
Arguably, the most relaxed and undistracted state the user can be in, is being
unaware of any testing. But apart from the difficulty of having users perform
tasks without them knowing they are being observed, it is a moral and legal
gray area. The proper approach is therefore picking a scenario that will help
keep irregularities and distractions to a minimum during testing, for both the
benefit of the user, as well as the resulting data.

4.7.1 PPP Testing procedure

Since the usability study for the PPP involves multiple interfaces, the test is
reminiscent of a comparative study. In such a study, a certain bias is likely to
develop for the interface the user is presented with first. Additionally, perform-
ing the same task with similar interfaces will negatively impact the end result of
the study [115]. However, while the tasks performed during our usability study
share similarities, the two interfaces differ significantly in their use. The only
real similarity between the interfaces is the visual presentation. The learning
effect from using either of the interfaces will therefore be minor. Despite this
fact, we still counter balance for good measure by presenting half of the partic-
ipants with one interface first, and the other half the second interface.

As noted in Section 4.6, a number of metrics were selected that require the
PPP to output data for later interpretation. Modifications were made to the
application to allow for recording user interaction, as well as supporting an es-
tablished testing plan. As none of the participants will have interacted with
either of the interfaces before, it is necessary to start each test with a brief

58 Human Computer Interaction

tutorial. In order to further practice navigating the virtual scene using either
interface, a set of simple navigational challenges were constructed, which the
users must complete. Then the users are tasked with recreating a set of five
standardized pig products. Finally, they are given the questionnaire to fill out,
after which the testing for that interface is complete, and the process is repeated
for the alternate interface.

Figure 4.2: The meeting room within which the usability test was performed.

The entire test took place in a meeting room, pictured in Fig. 4.2, in the
building housing the sales staff volunteering for the usability test. Each of the
test procedure segments are described in further detail in the subsections below.

4.7.1.1 Interface Tutorial

The ability of users to figure out a given system without any instructions should
not be underestimated, provided that each action has a clear and distinct reac-
tion. However, even with a clear pattern of cause and effect, it is always possible
for a user to misinterpret the causal relation, which can lead to disastrous con-
sequences if not caught and handled early.

It is wise not to allow for any opportunity of ambiguous interpretation. There-

4.7 Formative Usability Study 59

fore, inform the users from the very beginning about how to interact with a
given system and provide time to ask questions and practice.

Another ideal method of teaching users is through tutorials. The art of cre-
ating tutorials has undoubtedly been advanced by the influx of games into main
stream, as almost every single major published game includes a tutorial in one
form or another. Some tutorials are restricted to just a simple text prompt
informing the users of which controls correspond to which actions. The most
advanced tutorials display additional visuals to clarify complex mechanics and
even impede the users progress until they have successfully demonstrated proper
use. The best tutorial to implement depends on a number of factors; the end
user, the context of the tutorial, the severity of the idea being conveyed. But
regardless of any of these factors, an interactive tutorial will always be more
engaging for the user than simple text prompts on the screen.

In the case of the PPP, an automated interactive tutorial would also be ideal.
Each participant would experience exactly the same instructions and interac-
tively tested for understanding of the simplest of concepts. We chose to com-
promise on the tutorial design for two reasons:

• Lack of time — The complexity of creating an automated tutorial for
a prototype interface increases as the functionality of the interface grows.
Although both the interfaces created for the PPP are simple in nature,
an automated process to ensure the users understanding is not. In fact,
ensuring that a tutorial is complete and understandable by the majority
of users will often require its own usability test.

• Scope of application — The prototype application is almost guaranteed
to change as a result of the usability test. If not, then the test would have
to indicate that the users are 100% satisfied. Even the most experienced
interface developer cannot hope to achieve such success without having
tested the interface even once. Investing a large amount of time for the
creation of a one-time use tutorial is rather inefficient, especially when
there are perfectly viable compromises.

The end result is a combination of pre-recorded video sequences with live nar-
ration, followed by an interactive practice session aided by testing personnel.
This allows us to ensure the that participant grasps the basic functionality of
each interface during a practice session where they are free to experiment with
the interface.

As previously mentioned, two interfaces for the PPP are compared based on
the Phantom Omni and mouse, respectively. Each of these interfaces have one

60 Human Computer Interaction

functionality mapped to a common key on the keyboard. Switching between
the two different types of rendering, visualized in Fig. 4.3, is accomplished by
pressing the space bar on the keyboard.

Standard X-Ray

Figure 4.3: Screenshots of the two different rendering options available to the user.
On the left, the standard surface rendering mode. On the right, the x-ray-like render
mode allowing the users to see the bone structure of the pig carcass more clearly.

The mouse interface allows the user to rotate, zoom and pan the pig carcass by
using the left, middle, and right mouse button respectively. Due to the limited
degrees of freedom provided by the mouse, rotating and panning is limited
primarily to the horizontal and vertical viewing axis. Rotation is similar to the
virtual sphere interface as described by Chen et al. [22]. The rotation applied
on to the pig carcass is best described by imagining a virtual sphere in the center
of the screen. The further away from the center of the view port, the users drags
the cursor to affect a rotation, the more the third axis (depth of view) affects
the rotation. If the mouse is moving fast enough when the user releases the
left mouse button, the pig carcass will continuously rotate in the same direction
until any mouse button is pressed.

While using the mouse interface, the user creates a cutting plane by placing the
cursor on top of the pig carcass and pressing the enter key on the keyboard.
This creates a cutting plane centered in the cursor removing the left part of the
pig (on the red side of the cursor). Just as with the pig carcass, the cutting
planes are rotated and moved with the left and right mouse button respectively.
Each plane is interacted with individually, i.e. it’s only possible to manipulate a
single plane at a time. The user can rotate the plane along an imagined centered
axis by grabbing an edge. Figure 4.4 illustrates the user grabbing the vertical
edge and rotating the plane along an imagined vertical axis down the middle of
the plane. Alternatively, the user is free to grab any corner of the cutting plane
and allow the user rotate the plane along an imagined diagonal axis, spanning
the two neighboring corners to the one the user has selected. Each of these
rotational scenarios are also visualized in Fig. 4.5 along with an imaginary line
that will always intersect the plane. Finally, the user is also able to reposition
the plane along its normal by using the right mouse button.

4.7 Formative Usability Study 61

1. 2.

3. 4.

Figure 4.4: Screenshots of mouse interaction with the cutting planes. 1. A single
cutting plane intersecting the pig carcass. 2. The mouse cursor interacting with the
edge of the cutting plane. 3. The mouse cursor interacting with the corner of the
cutting plane. 4. The plane being repositioned along the pig carcass.

The rotation and translation of the planes is simpler in comparison to the rota-
tion and translation of the pig. This is due to the limitation of ways the user can
interact with the plane while still having it centered around the pig. We restrict
the rotations and translations such that they only allow results that would still
have the cutting plane intersect with the pig.

The one exception being, when the user wishes to delete a plane. To delete a
cutting plane, the user simply moves the cutting plane along its normal until it
no longer intersects the pig carcass.

When using the Phantom Omni, which provides six degrees of freedom, we
found the most intuitive interaction style was to simply allow the rotations and
translations of the pen to be directly translated to the pig carcass and associated
cutting planes. Preliminary testing also indicated that it was easiest to assign
all interaction with the pig to one button, and all interaction with the planes
to the other. The button nearest and furthest from the tip of the pen on the
Phantom Omni, pictured in Fig. 4.6, will be referred to as the front and back
button respectively.

We assigned all of the plane interaction to the front button on the Phantom

62 Human Computer Interaction

1. 2.

3. 4.

Figure 4.5: Four rotational scenarios along with an imaginary line that will always
intersect the plane depending on the rotational scenario. The highlighted red parts are
”grabbed” by the user, while the dotted line is the imaginary constantly intersected
line. 1. Grabbing the vertical edges. 2. Grabbing the horizontal edges. 3. Grabbing
either of two opposed corners. 4. Grabbing the alternate two corners.

Omni. Creating a plane is done by simply clicking the front button without
hovering the cursor near an existing plane. If the button is held while near an
existing plane, the user is free to rotate and reposition the aforementioned plane
as long as the button is held. Holding down the back button allows the user to
rotate and reposition the pig carcass.

To delete a cutting plane, the user simply grabs it and drags it away from the
pig carcass.

The haptic capabilities of the Phantom Omni was also put to use, providing
feedback if the user touched the pig and having a slight magnetic pull towards
nearby cutting planes.

4.7 Formative Usability Study 63

Figure 4.6: The Phantom Omni c© Copyright Sensable Technologies, Inc. Image
user with permission by Sensable Technologies, Inc.

4.7.1.2 Navigational Challenges

To engage and quantitatively measure the participants using the interface, a
series of navigational challenges were created. The user was asked to align a set
of navigational frames with the view window, visualized in Fig. 4.7. A total of
five navigational challenges were created. The location and orientation of the
frames differ slightly depending on which interface the user is engaged in testing.
Differences in the frames were a necessity as the mouse interface was somewhat
more restricted in its user freedom, given the inherit lack of degrees of freedom.
The difference in navigational frames also served to reduce the learning effect
in between tests.

The proper alignment of the navigational frame was automatically detected by
the application at which point the next remaining frame would be presented,
and the time used logged for future use.

4.7.1.3 Product Creation

In this phase of the usability test, the user is tasked with recreating a total of
five standardized pig products. The participants have pre-existing knowledge

64 Human Computer Interaction

1. 2.

Figure 4.7: Screenshots of the navigational frames the user is presented with, and
has to align to the corners of the view window to proceed. The two green corners must
be aligned to the bottom corners and the blue to the top corners. 1. On the left is a
screenshot of an, as of yet, unaligned navigational frame. 2. When any of the corners
are properly aligned, the system provides feedback by displaying a green square in the
respective corner.

regarding all of the products they are asked to recreate. To ensure that there is
no confusion or ambiguity regarding the products they are tasked with creating,
every participant was provided with images of each of the products in question.
After all, the test is intended to identify usability issues, not evaluate how well
the users can recreate products from memory.

Real-time feedback on the user’s accuracy in recreating the intended products
was considered for this phase. However, the actual goal of the task was not to
recreate as accurate a product as possible, but rather determine the ease with
which the user could create an approximation of it, as well as determine which
usability issues arose during interaction. Any feedback indicating how much
the users recreation of a given product differs from the expert version would
undoubtedly cause the user to focus on improving their accuracy at the cost of
performing the task quickly. This would skew the timed measurements to reflect
how persistent each user was in achieving as close a reproduction as possible to
the expert product. Therefore, we decided to leave the evaluation of the finished
product to the users themselves.

The user was instructed to indicate when he/she felt the product was complete.
At that point, the created cutting planes are recorded, along with the time used
to create the product.

4.7 Formative Usability Study 65

4.7.1.4 Questionnaire

A custom questionnaire including the SUS questionnaire, as originally published
[16], was presented to the user after they had completed the previous phases
with a single interface. Once both interfaces had been tested, we presented the
participant with an additional binary choice to determine their preference for
either interface, along with asking them to justify their choice.

4.7.2 Pilot Study

As previously mentioned pilot studies are vital to determining problems with
the testing procedure. A complete pilot study was conducted with a colleague
who had never used either of the interfaces before. The following issues were
discovered as a result:

• Questionnaire — One of the questions from the SUS questionnaire was
missing from our printed version.

• Missing navigational challenge — A navigational frame for one of the
interfaces was missing.

• Graphics glitch in mouse interface — When the cursor neared the
edges of the screen in the mouse interface, a graphical error would oc-
cur where the cursor would increase in size and fill the entire screen. A
relatively insignificant problem, which was simple to fix.

• Navigational challenge difficulty — The navigational challenges posed
to the user were determined to be much too difficult. Specifically, the
corners with which each navigational frame had to be aligned caused the
user a lot of difficulty. This is a classic example of the developer becoming
too acquainted with the software, so as to lose touch with the inherent
difficulty in attempting something for the first time, without prior practice.

• Lack of visual cues to aid in cutting — Initially, the cursor did not
indicate which side each newly introduced cutting plane would remove pig
carcass tissue. While not specifically an issue during testing, it became
clear that this type of visual feedback was clearly beneficial for the user,
and therefore implemented.

• Haptic feedback vibrations — The magnetic pull from nearby cutting
planes would occasionally cause the Phantom Omni to start vibrating due
to multiple contradicting forces. The pull generated by the cutting planes
was reduced to prevent this from happening.

66 Human Computer Interaction

• Subtle visual interface — The colors used to highlight the different
portions of the selected cutting planes were intensified based on user feed-
back.

Since the list of changes made to the PPP was significant, a second pilot test
was performed with yet another colleague to identify any outstanding issues.
The following final issues were addressed as a result of the second study:

• Right to data collection — The agreement, to be signed by participants,
allowing us to collect and analyze usage data anonymously, was clarified
and made more precise.

• Redundant haptic interaction — The haptic feedback caused by in-
teracting with the pig carcass during navigational challenges was deemed
redundant and disabled. The user has no need to ’touch’ the pig while
trying to align the frames.

• Rotation speed increase — The user complained that the rotating of
the pig carcass was not responsive enough. The rotational speed using the
mouse was doubled as a result.

• Challenge skipping — Although the navigational frames were much
easier to align to the screen, it was deemed important to implement the
possibility to skip individual phases should the need arise. Although not
collecting this type of data would be a loss, it was important to prioritize
the creation of products as the main focus of the testing. It is conceiv-
able that a user might be able to properly prototype products, yet fail at
aligning the navigational frames.

The issues identified by the second pilot study were minor in nature and caused
minor changes to the interface after being corrected. A third pilot study was
therefore deemed unnecessary.

4.7.3 Expert Product Creation

Expert knowledge was gathered from a trained butcher, Jesper Frandsen from
Danish Crown [26], for the purposes of recreating and collecting cutting data
of five standardized products. Since the primary goals were to collect expert
knowledge and assess product reproduction, an expert user cooperated with the
trained professional butcher in recreating the standardized products. The expert
user interacted with the PPP interface guided by the professional who provided

4.7 Formative Usability Study 67

instructions as to where to apply the cuts to the pig carcass. Photographs of
the five products along side the virtual reproductions can be seen in Fig. 4.8.

Ham
1201

Frontend
1301

Middle
1501

Pork Loin
(with Spine)

1602

Pork Belly
1801

Figure 4.8: The five products shown alongside their virtual counter parts. The
virtual products shown in the bottom are created using the expert cuts. The most
striking visual differences are caused by a lack of physical simulation, most notable in
product 1801, where the cut flesh does not even out at the end like in the real world.
The other notable difference is skin appearance, caused by interpolation, most notable
in product 1602 and 1801.

The volumetric representation of the pig carcass easily allowed for the trained
professional to recognize both bones and muscle groups, and made significant
use of both the standard and x-ray-like rendering of the pig carcass. The low
quality rendering mode did not inhibit the butcher from recognizing significant
anatomy used as a guide to apply the cuts, which allowed the cuts to be placed
quickly and precisely aided by the expert user. The previously mentioned visual
artifact of malplaced skin color also did not negatively affect performance.

It is possible to provide a rough general measurement of the accuracy of the
applied expert cuts, by examining the first three products visualized in Fig.
4.8. These three products together make up the entirety of the pig carcass from
which they are each individually cut. Out of the 4261045 voxels comprising the
pig carcass, the first three expertly cut products together make up 4262697,
yielding a difference of 1652 voxels, less than 0,1 %. It is, of course, possible
that the first product includes the whole pig, and the other two cut it away
completely, yielding the best accuraccy, but as Fig. 4.8 shows, this is not the
case.

68 Human Computer Interaction

4.8 Results

There are numerous ways and methods with which to interpret results gathered
from a usability test. Each of those methods often have their own strengths
and weaknesses, with many being ideal in some, but never all, situations. The
usefulness of the methods are also highly dependent on the data provided. It
is beyond the scope of this thesis to cover, even just the basics of, all these
different methods. Instead, generalized best practices are noted upon as well
as potential pitfalls during interpretation, before providing the specifics behind
the data and associated analysis performed on the PPP.

As with most kinds of data, it usually helps to view them from as many per-
spectives as possible in order to recognize patterns or ”hot spots”, which call for
further attention. A modern spreadsheet enables easy visualizations of the data
using a large variety of display styles. However, this multitude of options is only
useful if care is taken to separate the truly important from the noise. Especially
when communicating any significant findings when presenting the data.

Having compiled the findings into a compact, easy to understand and display,
visualization, it is important to report the confidence interval [109] associated
with them. Confidence intervals reveal how likely it is that your findings are
also valid for the remaining population that did not participate in the usability
test. Without the confidence interval is hard to say anything with any certainty
regarding the collected data. Section 4.8.1 presents all of the results collected
during the usability study.

4.8.1 PPP Results

The quantitative data gathered during the usability test, including a short eval-
uation, is provided in the following subsection. It is important to emphasize
the likelihood of a bias in any results from a usability test comparing as com-
mon an interface as the keyboard and mouse with any other interface. Even
though it is a priority to minimize bias whenever possible, it is also important
to remember that the large majority of users in the case of the PPP are likely
to have pre-existing experience with the mouse. So while the results are not an
unbiased evaluation from a person with no pre-existing knowledge, the results
do resemble the real life scenario of a user already familiar with the mouse and
keyboard.

In the case of the PPP, none of the participants had interacted with either of
the specific interfaces before, so despite the intimate knowledge of the affor-

4.8 Results 69

dances provided by the mouse and keyboard, they are still novices when using
the mouse-based interface of the PPP. However, there is undoubtedly a higher
familiarity with that particular input device and it might result in the user
having an easier time learning to use the interface.

Each participants age, gender, first interface usage, as well as their final personal
preference is listed in Table 4.1.

Participant Age Gender First Use Preference
1 32 Male Mouse P. Omni
2 49 Male Mouse P. Omni
3 53 Male P. Omni Mouse
4 28 Male P. Omni Mouse
5 45 Female Mouse Mouse
6 37 Male Mouse P. Omni
7 24 Male P. Omni P. Omni
8 58 Male P. Omni P. Omni

Table 4.1: The total number of participants in the usability study, along with their
age, gender, which interface they were presented with first, and which they expressed
a preference for.

On a single occasion, during the usability test for the second user, the PPP appli-
cation crashed. Unfortunately, this meant that the participant could not provide
us with a complete set of data. This discrepancy is reflected in the confidence
intervals calculated using the data, by the lower sample base. Coincidentally,
the same user was also unable to complete the navigational challenges using the
Phantom Omni within the allotted time. Again, the confidence interval reflects
this discrepancy by calculating results with a lower sample size.

4.8.1.1 Quantitative Data

This section presents two different types of summarized quantitative data: per
user and per task. The data is summarized using varying statistical methods,
as elaborated below:

• Per User — We summarize the average times per user, using the mean
and standard deviation. These two measurements give a clear picture of
the users overall performance given the set of differing tasks. The measur-
ments are not particularly important for the evaluation of the interfaces
on their own, but are presented for the sake of full disclosure.

70 Human Computer Interaction

• Per Task — Per task summaries are more interesting, since they are mul-
tiple measurements of users trying to accomplish an identical goal. Sauro
and Lewis [105] have shown that the geometric mean is a better estimate
of the middle task-time in usability studies, than the arithmetic mean or
median, for a small sample size. Therefore, we apply the geometric mean
and calculate a 95% confidence interval using the geometric standard de-
viation.

The mean time required for each user to complete the tasks presented during
the navigation phase are visualized in Fig. 4.9. The data shows that there is
a clear difference in skill between participants, and the results from the two
interfaces seem to be slightly correlated.

-50

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

S
e

co
n

d
s

Test Participant

Mouse

Phantom omni

Figure 4.9: The mean time taken for each participant to complete the five navi-
gational challenges, along with the standard deviation for each of the two devices.
As previously noted, the second user could not complete the navigational challenges
within the alotted time and is therefore left unreported.

Every person is different, so it really does not come as a surprise that the
competence with the interfaces differs between persons. This type of data would
not normally be included in a summary since it does nothing to prove or disprove
any of the usability goals, except give a vague idea of how long on average it
takes these individual people to complete the navigational tasks.

Figure 4.10 visualizes the same data, summarized per navigational task.

The mean navigational time is an approximate estimate for how much time we
can expect users to require, to solve a given task, using either the mouse or the
Phantom Omni as input device. Since our sample size is relatively small, the
confidence interval is quite large as Fig. 4.10 clearly shows. The data has a

4.8 Results 71

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

S
e

co
n

d
s

Navigational Task

Mouse

Phantom Omni

Figure 4.10: The geometric mean time taken by users to solve the individual nav-
igation tasks using the mouse and the Phantom Omni. The error bars represent the
95% confidence interval using the geometric standard deviation based on the students
t distribution. Because the standard deviation is calculated on a logarithmic scale, the
upper and lower confidence interval bounds are not equally distant from the geometric
mean.

slight lean towards the Phantom Omni in overall fastest task completion, but it
is too small to say anything with certainty. As previously noted, there is a dif-
ference in between the tasks presented to the users during the navigation phase,
as each of the interfaces navigate the virtual space differently. Thus, a direct
comparison between measured task times from both interfaces can be helpful,
but should definitely not stand alone as an assertion of a specific interpreted
result.

The task times for each user to create all of the five products are a more solid
basis for comparison. At that point in the usability test, each user has been
given an introduction to the interface, practiced, as well as solved a series of
challenges designed to familiarize the user with the interface.

The mean time each user took to complete all of the products is visualized in
Fig. 4.11. Just like in the case of the navigational tasks, the individual mean
time per user is not particularly useful, except for showing that each participant
is not equally capable with both interfaces.

72 Human Computer Interaction

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

S
e

co
n

d
s

Test Participant

Mouse

Phantom Omni

Figure 4.11: The average time taken for each participant to create the five meat
products, along with the standard deviation for each of the two devices.

Figure 4.12 visualizes the geometric mean time for each of the five created
products. The last two products are undoubtedly the most complex to create,
which the measured time clearly reflects. The results do not clearly favor one
interface over the other. Even though it’s relatively clear visually, given the
upper and lower confidence intervals, it is still advantageous to perform a more
thorough analysis to determine whether or not the results quantitatively lean
one way or another.

We perform a 3-way analysis of variance (ANOVA) [86] (mixed effect) with
pairwise interactions, where the interfaces and product creation tests are fixed
effects and users are considered a random effect. As previously mentioned, we
intentionally do not compare the navigational tests as they differ by design, and
serve as part of the learning introduction.

The results, displayed in Table 4.2, show no significant effect from the inter-
face alone. Unsurprisingly, the analysis indicates that certain products are sig-
nificantly easier/faster to create than others. It is also clear that there is a
significant difference in performance with the interfaces per specific user. How-
ever, these findings are not relevant for the comparative study between the two
interfaces.

The findings reinforce the interpretation that, while there is a clear variance
associated with what type of task is being completed or the interface being used
for that particular task, there is no clear discernible performance difference
between the interfaces overall.

4.8 Results 73

0

50

100

150

200

250

1 2 3 4 5

S
e

c
o

n
d

s

Product Creation Task

Mouse

Phantom Omni

Figure 4.12: The geometric mean time taken by users to create each of the five meat
products. The error bars represent the 95% confidence interval using the geometric
standard deviation based on a students t distribution. Because the standard deviation
is calculated on a logarithmic scale, the upper and lower confidence interval bounds
are not equally distant from the geometric mean.

Source Sum Sq. d.f. Mean Sq. F Prob>F
User 5.3925 6 0.89876 1.49 0.3308
Interface 0.0001 1 0.00006 0 0.9928
Test no. 5.5283 4 1.38208 8.56 0.0002
User*Interface 3.7328 6 0.62214 3.48 0.0129
User*Test no. 3.8732 24 0.16138 0.9 0.599
Interface*Test no. 4.2952 4 0.56971 3.18 0.0312
Error 4.2952 24 0.17897 0 0
Total 25.1009 69

Table 4.2: Results from the analysis of variance with pairwise interaction, where
interfaces and products are fixed, and with users considered a random effect.

The scores collected by the SUS questionnaire are shown in Table 4.3 along with
a calculated upper and lower confidence level. The scores are, again, too similar
to declare one interface more usable than the other. However, it is possible to
interpret the general perception of both of the interfaces. Bangor et al. [9, 10]
have analyzed a large body of work using the SUS, and established an overall
grading scale for evaluating scores. An average score around 55 places both
these interfaces in the ”average” category. A clear indication that neither is
perfect in its current form.

74 Human Computer Interaction

Interface Mouse Phantom Omni
Mean SUS Score 55,3125 56,875
Lower 95% Confidence 46,846 46,898
Upper 95% Confidence 63,779 66,852

Table 4.3: The mean SUS score for each interface along with upper and lower 95%
confidence.

4.8.1.2 Qualitative Evaluation

Having the PPP interfaces tested by eight different people provided valuable
insight into where problems occurred, and what might be ideal changes to the
interface. Below is a list of the significant observations and interpretations of
the usability test:

• User fatigue — A single case of user fatigue was noted during testing
with the Phantom Omni interface. While an isolated case, we believe the
significance of this should not be overlooked. For the Phantom Omni to
be optimally incorporated into any daily use, it will require its users to
acclimate themselves to becoming fairly agile with their wrists. The age of
the user and by extension the expected health of the users various muscle
groups have a significant impact in regards to the Phantom Omni, in our
opinion. Zhai et al. [133] also reported a case of user fatigue in their study
of muscle groups affecting performance.

• Plane Selection — On a few occasions, test participants experienced
difficulty in selecting a single isolated plane. We considered solutions for
each of the interfaces to overcome this issue. In the case of the mouse
interface, the thickness of the cutting plane frames could be adjusted to
fit the number of nearby planes to allow for easier selection when they
are isolated. In the case of the Phantom Omni interface, a direct line in
between the cursor and the nearest plane might help mitigate issues with
perceived depth.

• Control Confusion — When using both the mouse as well as the Phan-
tom Omni, users would occasionally mistake the function of one of the
buttons with that of another. Additional visual and audial cues might
help users better remember which buttons are assigned which functions as
well as longer, more tutorialized, introductions.

• Navigation Plane — Three users initially tried to use the cursor to grab
the navigational planes during the navigational testing phase. Making
them less similar to that of the cutting planes would likely resolve this
misunderstanding.

4.8 Results 75

• Phantom Omni Continuous Button Holding — During preliminary
testing we experienced occasional problems in holding down the Phan-
tom Omnis buttons continuously. We also noticed similar issues during
both pilot tests as well as during the usability study. We believe this to
primarily be the result of low quality buttons on the Phantom Omni.

• Mouse Rotation Stopping — The mouse allows for the user to contin-
uously rotate the pig carcass, if the cursor is not static while letting go of
the left mouse button. This feature would occasionally cause the user to
unintentionally rotate the pig carcass. Since few participants actually used
the feature, it would either be best removed, or made more less sensitive
to the users movements when letting the mouse button go.

• Mouse Rotational Confusion — On a number of occasions, users would
verbalize having trouble figuring out how to rotate the pig carcass using
the mouse. A more visual tutorial could help alleviate this issue, along
with more time to practice with the mouse interface.

• Cut plane orientation — In an effort to keep the interface as simple
as possible, the option of choosing which side of a cut plane should be re-
moved, was not implemented. However, the user feedback collected made
it clear that this option was something most users would like to see im-
plemented.

• Haptic Feedback — Haptic feedback has previously been shown to im-
prove accuracy, but not task times, in 3D target acquisitional tasks [118].
None of the test participants seem to notice the magnetic draw to the cut
planes, nor was the haptic feedback provided by the pig used extensively.

• Overall Preference — Five of the eight participants expressed to prefer
the Phantom Omni. Given the nearly identical SUS score, we believe that
a significant part of the users preference is based on anticipated perfor-
mance, given more time with the interface.

• Phantom Omni Preference — Almost all of the users who noted their
preference for the Phantom Omni, noted it as being easier to navigate
three dimensional space with. A single user noted the preference due to
all of the necessary functions being operable from one hand.

• Mouse Preference — Out of the three users preferring the mouse, two
noted that with additional experience they would have preferred the Phan-
tom Omni. A single user noted preference for the mouse based on ease of
learning and compact size for mobility.

76 Human Computer Interaction

4.9 Discussion

At first glance, it might seem that the usability test failed to establish the most
sought after answer. Which interface did the users prefer? At this point, neither
is the clearly correct answer. This result is very significant and should be seen
in the light of the brief training period each user was provided with prior to
using both interfaces. I believe that the Phantom Omni will, in the long run,
be the preferred interface of choice due to its ease of 3D interaction given its
six degrees of freedom. But despite it having analogous moving and rotational
behavior with the virtual elements, when compared to the mouse interface, it
still was not heavily favored, quantitatively, by any means. With the limited
sample size, it is hard to say anything significant about what exactly caused both
interfaces to quantitatively perform approximately the same. However, given the
explicit testimony from several users, that they would prefer the Phantom Omni
with further use, at least suggests that the Phantom Omni would become the
preferred interface.

Apart from the quantitative evaluation, a lot of valuable information was also
gathered from the qualitative evaluation of the test. It is my impression that
most pressing usability issue, apart from all the ones mentioned in the previous
section, is how to make both the interfaces easier to learn to use. It was quite
clear that none of the participants had worked with similar interfaces before,
and this was made all the more apparent by their occasional struggles to orient
the pig carcass in the way they intended.

The testing also made it clear that the haptic feedback provided by the pig and
the cutting planes went largely unnoticed by all of the test participants. None
of them commented on it except during the introductory phase where they were
shown how haptic feedback worked.

The conclusion is that, although neither interface clearly performed better than
the other, both interfaces allowed all of the participants to create all of the
products in question. Based on the statements of the participants I would
suggest another usability test with both interfaces addressing the usability issues
discovered in the current versions. It would be imperative that the participants
participate in a longer testing session to familiarize themselves further with
both interfaces. As previously noted, I would expect the Phantom Omni to
outperform the mouse in the long run, due to its more intuitive interaction
style.

Chapter 5

Future Parameterization

In the previous chapter, the interface of the PPP is described in detail along
with the design process. The interface performs planar cuts as well as providing
future support for customized cutting, using a binary mask. The exploration of
more customized cuts and the constraints imposed by the existing standards in
the meat industry is explored in this chapter. A perspective of future uses of
the PPP is provided in section 5.1.

Hansen explored virtual cuts of all variations in his thesis [32], which are cate-
gorized into the following groups:

• Anatomical Cut — Cutting along a boundary of the anatomical struc-
ture of the pig carcass. Usually along a membrane separating muscles or
along a bone.

• Semi-Anatomical Cut — Cutting along a boundary of the anatomical
structure of the pig carcass, within geometric constraints, e.g. cutting 5
cm along a bone, or trimming a fat layer to a given thickness [88].

• Geometric Cut — Performing a cut along a geometric constraint, such
as a plane, usually guided by anatomic cues.

The first two types of cuts are typically completed via manual labor in the

78 Future Parameterization

abattoir, whereas the last type has become mostly automated. To expand upon
the PPPs interface, it would be an ideal next step to incorporate cuts similar to
the anatomical cuts completed via manual labor. Given that the PPP supports
a haptic feedback device, it might appear like an ideal solution to emulate real
world meat interaction. Specifically, allowing the user to guide the knife along
muscle membranes, to perform a precise cut, according to established standards.
Incorporating haptic feedback would be ideal to keep the user aligned with
standardized industry cuts.

However, the goal of the PPP, and any other interface for that matter, is to
guide the users to achieve their goal as quickly and efficiently as possible. If
established standards can be used to haptically guide the user along pre-set cut
paths, there’s no real reason to not just let the user pick an established product,
and have the system perform all the necessary cuts. In other words, there is
no reason to let the user freely cut the products early in the prototyping phase,
since most new products rely on already established standards. Customizability
requiring manual labor does not enter into the development process until at the
very end of the product production cycle.

To properly apply the standardized anatomical cuts to a real world pig carcass,
it is important to compensate for the biological variation in the pigs anatomy.
Hansen [32] presents research regarding a so-called pig atlas, which can serve as
a mean representation of all pigs in a given population, from which individual
variations can be derived. As such, it is an ideal starting point when intending
to generalized cuts to all pigs.

The next version of the PPP interface, allowing for more custom cuts, should
have the interaction structured in the following fashion:

1. Geometric Cuts — This phase of product design would be nearly iden-
tical to the current implementation of the PPP, except allowing the user
to simply select predefined cuts creating the foreend, middle or ham. This
division is typically performed on every pig carcass passing through on
abattoir.

2. Product Cut — The previously chosen third of the pig is cut to conform
to a specific standardized product, if needed. The standardized products
are defined on the pig atlas in order to let them easily be applied to
variations of a pig’s anatomy. A properly segmented pig atlas would also
allow the user to include or exclude specific bones or muscles, as part of
the product.

3. Custom Cut — The final product is further customized to meet the
customers needs. The cuts required to arrive at this final product are free

5.1 Future Integration 79

for the user to modify and move as needed, in order to make full use of
the affordances provided by the virtual product.

The entire process from start to finish should be applied to an established mean
pig carcass, allowing for any biological variation of the completed prototypes
to be visualized. The estimated lean meat percentage for a variety of complete
products could be easily calculated, allowing for an early forecast of potential
earnings and losses, during product development.

5.1 Future Integration

The modernization of the slaughterhouses and the abundance of pig carcass
data available for use, due to the introduction of CT scanning, opens up a wide
array of possibilities. The PPP is just the first step in a long line of potential
improvements an interactive application could serve:

• Interactive cost/profit projection — Recent research [117] has already
paved the way for better estimates of the lean meat percentage (LMP) of
pig carcasses using virtual dissection. The PPP is an ideal framework for
the integration of a realistic model of the expense each type of cut would
incur on the production of the final product. This model would need to
evaluate the complexity of the applied cuts to determine which could be
completed using the existing automated assembly line, and which would
need to be performed by manual labor. The model could also provide an
assessment of the byproducts created as a result of the final product and
their value.

• Cut Planning — The products created by the automated assembly line
in a modern slaughterhouse are still quite limited in their variation. In
fact, many of the automated systems in the assembly line are built and
optimized for the exact purpose of creating identical products despite the
biological variation of each pig carcass. The more custom operations are
still performed by hand, by trained butchers. An increase in the flexibility
of the automated product creation procedure would pave the way for using
the PPP as a cut instruction generator. Theoretically allowing the user
to create a pre-planned set of cutting instructions, for the machines to
execute on any number of pig carcasses.

• Personnel Training — The PPP could serve as an interactive training
system to educate staff about the anatomy of the livestock used in product

80 Future Parameterization

production. It is also possible to use the PPP as a training tool for proper
slaughter procedures. However, it is important to note that with the
currently available technology, the virtual interaction with a pig carcass,
cannot hope to supplant the real world version. Instead, it could aid its
users to remember proper cutting procedure and evaluate their applied
cuts compared to expert cuts. Effectively making it a useful educational
support tool.

Chapter 6

Overview of Contributions

This chapter summarizes the main results obtained in the papers included in
part II.

6.1 Customized Texture Transfer function

Chapter 8 presents a novel approach for improving direct volume rendering,
using synthesized textures in combination with a custom transfer function. The
intention is to narrow the visual gap in between the directly rendered pig carcass
volume and a real pig carcass, using a piecewise constant transfer function. The
transfer function maps density values to corresponding tissue types, texturizing
the volume providing a more realistic appearance. We acquire textures for the
three general types of tissue present on a pig carcass; fat, muscle and bone.
These pictures are used as input in our implementation of Kopf et als [62] solid
texture synthesis algorithm.

The algorithm accepts 2D textures as input (exemplars) and iteratively improves
upon a solid texture comprised of random samples from the original input.
The texture is improved by optimizing an energy function, which measures
the difference between the input exemplar and the texture being synthesized.
Differences are calculated by comparing small texture patches (neighborhoods)

82 Overview of Contributions

from the synthesized texture, with identically sized texture patches from the
exemplar. The algorithm uses a variety of methods to accelerate the synthesis
including principal component analysis, meanshift clustering, and approximate
nearest neighbor search [89].

Despite a few initial failures to generate acceptable solid textures in the case
of certain input exemplars, the method yields an acceptable result for each of
the tissue types. The textures are applied using a piecewise constant transfer
function, mapping voxel intensities to 3D texture volumes.

Direct application of these textures to the solid yields noticeable periodicity.
This artifact is reduced via multi level application of the same texture at three
distinct levels applied with a measure of transparency. Figure 6.1 visualizes the
three scaled applications of the muscle texture, yielding the improved result in
the lower right.

Figure 6.1: Three differently scaled muscle textures combined to create the final
result. The top and middle segment show zoomed in areas to show finer detail.

The result is a significant improvement in visualization quality, compared to the
simple linear transfer function, as visualized by the comparison in Fig. 6.2.

6.2 Automatic Quality Measurement and Parameter Selection for
Example-based Texture Synthesis 83

Figure 6.2: On the top, volumetric data from the pig carcass, visualized without
enhanced graphics. The colors for the meat, bone, and fat tissue are the average color
values of the textures applied on the right. On the bottom, volumetric data from
the pig carcass, visualized with enhanced graphics. The highlighted sections in yellow
indicate the zoomed section displayed on the right.

6.2 Automatic Quality Measurement and Param-
eter Selection for Example-based Texture Syn-
thesis

Chapter 9 continues research on the texture synthesis algorithm presented in
Chapter 8, by examining direct and indirect methods to automatically select
parameters for example-based texture synthesis.

Hong et al. [54] present a method with which to directly estimate the scale in a
texture, by representing textured patches as probability density functions. We
apply the method to textures utilized by Kopf et al. [62] and receive mixed
results, as visualized in figure 6.3. The scale measure presented by Hong et al.
discards spatial location information which leads to the inability to properly
detect all structural elements. The detected scale is arguably incorrect when

84 Overview of Contributions

comparing the last two textures in figure 6.3. The bigger brick texture (e) is
detected as having the smaller scale compared to the smaller brick texture (f).
We present novel alternative methods of measuring scale, based on clustering
and tree-based representations.

(a) (b) (c) (d) (e) (f)

Figure 6.3: The top row shows the original textures, along with the median neighbor-
hood estimated from every single pixel as a red box in the texture, using the approach
by Hong et al. [54]. The same neighborhood size is also visualized immediately below
the texture. The bottom row is a scale map representation of each of the textures,
obtained by applying the energy equation by Hong et al., where each pixel is given an
intensity matching the estimated best neighborhood size surrounding that pixel. The
more intense the pixel, the larger the estimated neighborhood for that location.

We also present and test a set of heuristics which, combined with an objective
similarity measure, are capable of successfully synthesizing a better result than
those using a standard set of parameters (defined by Kopf et al.), as pictured
in Fig. 6.4.

Automatic parameter selection is a vast problem, and the research presented in
Chapter 9 only covers a small portion of the problems that need to be addressed.
The methods presented are not without fault, and the similarity measure occa-
sionally produces failure cases. However, the resulting synthesis using automatic
selected settings outperforms the standardized settings provided by Kopf et al.
in the majority of cases we tested. We cover all of the major limitations of
our research to provide a solid basis for future research as well as a number of
methods useful in the next step required to solving the remaining problems.

6.3 Real-Time Registration Based Volume Interpolation 85

Figure 6.4: Comparison of the four sample textures synthesized using automatically
detected optimal settings (top row) and standardized settings used by Kopf et al.
(bottom row). The quality as measured by the crude reverse neighborhood lookup
comparison test is listed below each result. The optimized approach results in a better
synthesis in 3 out of the 4 presented textures. The brown texture (third from the left)
is a failure case, showing a slightly more blurry texture than the standard approach.

6.3 Real-Time Registration Based Volume In-
terpolation

Chapter 10 continues expanding on upon research, presented in Chapter 8,
aimed at improving the visual quality of directly rendered volume data. Direct
volume rendering commonly relies on the raw computational power provided by
modern GPUs in order to achieve real-time visuals. The volume itself is often
anisotropic as a result of the process used to acquire it, and the rendering pro-
cess traditionally relies on interpolation, in order to turn the discrete (volume)
signal into a continuous one.

Modern graphics hardware only provides built-in functionality supporting linear
interpolation. Other types of interpolation can be implemented via software-
based shaders, however the performance penalty is often severe due to the high
number of texture look ups involved.

We present a novel approach for real-time anisotropic volume data interpolation
on a GPU and draw comparisons to standardized interpolation alternatives. Our
approach uses a pre-computed set of cross-slice correspondences to compensate
for missing data. The method for calculating correspondences is based on work
by Ólafsdottir et al. [69] who expand upon previous work regarding registration-

86 Overview of Contributions

based interpolation by performing two-way registration.

We perform a quantitative and qualitative analysis of our approach, by evalu-
ating the results of its application to two different volumetric data sets. The
primary data set used for testing was derived from an isotropically scanned pig
carcass consisting of 212× 512× 1662 voxels. Using this data set as the ground
truth, we created increasingly sparse versions of the data set (removing slices
on the z-axis) and applied the registration-based interpolation. We investigated
both visual quality, as well as numerical divergence from the ground truth. Ap-
plying the method on increasingly sparse data sets, we gather valuable data
revealing performance boundaries of the approach.

Isotropic dataset Anisotropic dataset RB. interpolated dataset

Figure 6.5: 3 × 2 comparative screenshots of the (originally) isotropic data set of a
pig carcass. On the left, the unaltered original isotropic data set. In the middle, a
sparse version of the same data set retaining every 9th slice, interpolated using linear
interpolation. On the right, the same sparse data set interpolated using real-time GPU
accelerated registration-based interpolation. While the interpolated version lacks the
visual fidelity of the isotropic data set, due to smoothed surface normals, it looks much
better than the linearly interpolated anisotropic data set in the middle.

Our method produces high quality interpolation, as seen in Fig. 6.5, with a mod-
erate performance impact compared to alternatives. The rendering performance
impact compared to linear interpolation is visualized in Fig. 6.6. Although the
performance of the registration based interpolation is expectantly lower than
the built-in hardware interpolation, it still yields interative frame rates. At a
sparsity level of 6, it performs approximately as well as the trilinearly interpo-
lated isotropic pig, while using approximately half of the memory capacity. The
visuals are comparable, although the isotropic pig has a higher fidelity given its

6.4 Pig Product Prototyper: Cutting interface design 87

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

A
v

e
ra

g
e

 F
ra

m
e

s
P

e
r

S
e

co
n

d

Sparsity Level

Trilinear

Registration Based

Figure 6.6: Average frames per second, measured over a 60 second time period, for
both hardware supported trilinear interpolation, and registration based interpolation.
Both types of interpolation show a linear increase as the data set becomes more sparse.
Interesting is the fact that at sparsity level 6 the registration based interpolation equals
the trilinearly interpolated isotropic data set.

non-interpolated surface normals.

To summarize, the presented registration based method is ideal for reconstruct-
ing sparse data sets, and allows for high quality rendering on memory limited
hardware such as mobile graphics cards.

6.4 Pig Product Prototyper: Cutting interface
design

Chapter 11 presents the culmination of most of the aspects of this thesis. The
conception and design of the pig product prototyper is described, along with
the usability study performed to evaluate its performance.

The PPP is a unique interface, explicitly designed for the purposes of proto-
typing pig products and provides both a mouse and keyboard based interface,
as well as a Phantom Omni based interface. Collaborating with DMRI [28]
and Danish Crown [26], the interfaces were compared in a comparative usability
study with eight volunteers from the target user group.

Prior to the usability test, an expert butcher is consulted to produce five industry
standardized pig products. The accuracy of these products confirm that the

88 Overview of Contributions

directly rendered volume data is adequate, in allowing an expert to recognize
the pigs internal anatomy, and realistically recreate existing products.

A total of eight volunteers from the targetted user group participated in the
usability study. Each user was given a brief introduction to both interfaces,
and posed a series of basic navigational challenges to improve their skill with
the respective interfaces. The user is then tasked with re-creating five industry
standardized products. Their completion times are tracked and final results both
objectively and subjectively compared to the previously established product
ground truths.

The usability test reveals no major usability issues with either interface, and
the quantitative evaluation did not favor one interface over the other. None of
the volunteers have had previous interactions with either of the interfaces, nor
the Phantom Omni controller. The subjective opinion of the volunteers leaned
towards preferring the Phantom Omni. The most prominently cited reason
was the direct correlation of moving and rotating the Phantom Omni, and the
respective movement and rotation of virtual elements.

Due to this direct correlation in interaction using the Phantom Omni we believe
that it is just a matter of further experience with the interface, leading to it
being significantly preferred.

Chapter 7

Conclusion

This chapter summarizes the contributions of this thesis, published in Part II
with theoretical background and expanded elaboration in Part I. Perspectives
are drawn in relation to the original objectives, stated in section 1.1, along with
some closing remarks.

7.1 Summary

The first objective of the thesis is to study and apply methods for realistically
rendering pig carcass volume data. Volume visualization is a key ingredient
in moving pig product prototyping into the digital realm, where products can
be designed with affordances not provided by real pig meat. Apart from the
importance of recognizing pig anatomy, it is beneficial to make the visualization
as realistic and aesthetically pleasing as possible. The results of efforts to achieve
this goal are presented in Chapters 8, 9 and 10.

We address improving direct volume rendering and related visualization in three
ways. First, we improve the appearance information of the volume data by using
a custom transfer function mapping density values from CT scans to synthesized
textures, created from high quality images of muscle, fat and bone tissue, from a

90 Conclusion

pig carcass. Periodicity produced by repeating volumetric textures is mitigated
by multiple transparent layers.

Second, we analyze the problem of texture synthesis parameter selection, for
the purposes of creating higher quality results while automating the process.
We base our work on a state-of-the-art texture algorithm, namely Texture Op-
timization presented by Kopf et al. [62]. The standard parameters provided by
Kopf et al. generally produce good results. However, many textures perform
better with optimized settings, which we estimate using an indirect approach.
We use a similarity measurement, to search for the optimal texture synthesis
parameters, by maximizing the quality of the synthesis, as a function of param-
eters. Together with a set of heuristics we create a foundation for improving
automatic parameter selection. We also analyze and present indirect methods
of estimating a limited set of parameters. The direct method does not rely on a
similarity measure, and is less biased. However, further research is required to
determine their viability.

Third, we propose a novel real-time interpolation method, for improving anisotropic
volume data rendering. The method is based on registration-based interpolation
by Ólafsdóttir et al. [69] and provides significantly improved results compared
to standard interpolation techniques. The method is capable of compensating
for considerable sparsity in the volume data, as it utilizes structural information
to improve interpolation.

The second objective of this thesis is to develop an interactive haptic-enabled
system for the purposes of simplifying and improving the existing communica-
tion process, when developing pig product prototypes.

Through a collaborative effort together with DMRI [28] and Danish Crown [26]
we developed the Pig Product Prototyper. The application allows the user to
commit planar cuts to a volumetric visualization of a pig carcass using either
the standard mouse or Phantom Omni haptic feedback device.

The design process started by communicating with experts and users experi-
enced in product prototyping. Having established key needs, we designed the
interface using a set of heuristics and a trial and error approach. Once the
interface reached the significant final milestone a thorough usability test was
conducted with the target user group.

The formative comparison of the two input devices did not yield quantitative
data heavily favoring either of the interfaces. However, the data revealed com-
parable performance, despite users past experience with the mouse controller.
Qualitative analysis of the users perceived usability of both interfaces were aver-

7.2 Conclusion 91

age, indicating that both still have room for improvement. Subjective feedback
gathered from users leaned towards using the Phantom Omni, with the most
often cited reason being its direct 1-to-1 correlation of input and on-screen re-
action. Seven out of eight users stated that they favoured the Phantom Omni
outright, or would do so with more practice.

7.2 Conclusion

Apart from the individual contributions this thesis makes to the research fields of
volumetric visualization and human-computer interaction, the primary achieve-
ment is the culmination of work into an interactive meat product prototyping
tool. Valuable lessons are learned only from the interplay in between the devel-
oped technologies, revealing which contributions are important, and which less
so.

Enhancements to volumetric visualization were originally considered very im-
portant for the succesful integration of the tool. Not only as a means of im-
pressing prospective clients with realistic rendering, but also necessary for users
to better recognize pig anatomy. Although the visual improvements have con-
tributed to more realistic and aesthetically pleasing visuals, the significance of
their improvments lie, not in realism, but functionality.

Volumetric texture mapping using solid textures is a viable method for more
realistic rendering. The real importance lies in the minimum resources required
to apply the technique itself. Automated texture synthesis parameter selection
contributes to reducing this workload even more. The functionality these meth-
ods provide is a reduction in complexity for people while still achieving more
realistic rendering.

Registration-based volume interpolation also improves the visual appeal of the
rendered pig carcass. It is capable of rendering anisotropic data sets at inter-
active framerates and reconstructs smooth surfaces from very sparse data sets.
But its significance is perhaps biggest when seen from the perspective of the
meat industry. Improved data reconstruction makes it possible to produce re-
alistically rendered visuals using fewer data slices. Fewer data slices leads to
quicker CT scans, which is crucial for future integration.

Ironically, this means that the most significant contributions of the improved
visual quality, is not improved visual quality, but the affordances they provide.

The interactive product prototyping tool was initially conceptualized as a type

92 Conclusion

of simulator. Utilizing modern technology, this software could potentially serve
to replace real-life interaction with a better, more usable, virtual counter-part.
The real revelations during development was which aspects of this simulation
were actually beneficial, and which were not.

For instance, haptic interaction is a fascinating technology. Users are eager
to try new experiences and even crude haptic interaction is appreciated. The
Phantom Omni was originally considered due to its haptic capabilities, but
its most useful functionality turned out to be its six degrees of freedom. It
allowed for the analogous application of movement and rotation made by the
user, directly to a given virtual object. The object would move and rotate in the
same manner the Phantom Omni pen was moved. Arguably, as transparent an
interface as possible without having the user physically move the virtual object.

Advanced interactive concepts using haptics ended up restricting the user more,
instead of simply limiting interaction to relevant actions. It seems obvious in
retrospect, but the simplest solution turned out to be the best.

The usability test confirmed that the tool enables sales personnel from the tar-
get group to reconstruct standardized meat products. An expert user could also
easily identify anatomic cues, and use these to produce highly accurate recon-
structions with which to compare our results. This is a positive outcome and
bodes well for the future integration of the tool, in the meat industry.

I believe the developed Pig Product Prototyper is a useful tool, and its integra-
tion into the current meat industry work flow improves communication due to
the affordances it provides. The possibilities are only increased as future func-
tionality is added to potentially support personnel training, robot cut planning,
and interactive product profit projection.

Part II

Contributions

Chapter 8

Anisotropic 3D texture
synthesis with application to

volume rendering

Lasse Farnung Laursen, Bjarne Kjær Ersbøll
Jakob Andreas Bærentzen

Abstract

We present a novel approach to improving volume rendering by using syn-
thesized textures in combination with a custom transfer function.

First, we use existing knowledge to synthesize anisotropic solid textures to
fit our volumetric data. As input to the synthesis method, we acquire high
quality images using a 12.1 megapixel camera.

Next, we extend the volume rendering pipeline by creating a transfer func-
tion which yields not only color and opacity from the input intensity, but
also texture coordinates for our synthesized 3D texture. Thus, we add
texture to the volume rendered images. This method is applied to a high
quality visualization of a pig carcass, where samples of meat, bone, and fat
have been used to produce the anisotropic 3D textures.

8.1 Introduction

The use of volumetric data is becoming increasingly common within research
fields such as medical visualization, food production and graphics. This data is
also ever increasing in size as the scanners providing the data, e.g. CT, MRI, and

96 Anisotropic 3D texture synthesis with application to volume rendering

ultrasound scanners, are improving and thus able to provide higher resolutions.
Increased precision and more detail is a natural evolution as having too much
information, is somewhat of a luxury problem.

When concerned with rendering volumetric data in real time, two issues persist.
Firstly, the features that we would like to visualize might be on a finer scale than
the voxels, despite the ever increasing amount of volume data. In our case, we
visualize pig meat, and the variation in the texture of pig meat is on a finer scale
than the resolution of our CT scan. Moreover, the voxels in our CT scanned
data are stretched ten times along one axis. This problem is compounded by a
second issue which is the fact that the CT intensities represent material density,
which is not directly related to the appearance of the underlying tissue.

We present a novel approach which aims to alleviate both issues. With prior
knowledge about the type of volumetric data we wish to visualize, we synthesize
an anisotropic 3D texture which is applied to the volume data via a customized
transfer function. Using this transfer function, we map the CT intensities to
a high resolution solid pig meat texture which gives a qualitatively far better
representation of the meat than any single color. Moreover, the solid texture
texels are not stretched.

Solid textures are an ideal fit when rendering volumetric data. In almost all
cases, there is an interest in rendering what is beneath the surface or subdi-
viding the data to expose some deeper layer. Since a solid texture shares the
same number of dimensions as common volume data, its application is relatively
straightforward.

8.2 Related Work

The focus of this paper can be divided into solid texture synthesis, and the
application thereof in volumetric rendering.

8.2.1 Solid Texture Synthesis

Considerable work has been done within the field of texture synthesis, from
parametric methods [52] to non-parametric methods [27, 51], as well as alterna-
tive approaches [127]. Most texture synthesis algorithms use a sample texture as
input, referred to from here on as exemplar. This exemplar forms the basis for
either a parametric model, which synthesizes a new texture based on modeled

8.2 Related Work 97

parameters, or for a non-parametric algorithm, which reuses elements from the
exemplar and recombines these to create a new, yet similar, texture.

Solid texture synthesis has been pioneered and expanded upon within the past
two decades. Several methods, both parametric [39] and non-parametric [123],
as well as alternate approaches [56], have been presented.

A recent texture synthesis method, which we use to create our anisotropic tex-
tures, is called texture optimization [63, 66]. This method iteratively improves
the texture as a whole, making each modification smaller and more refined.

8.2.2 Volumetric Transfer Function

Volume rendering [31] has come a long way. Most applications today make use
of graphics hardware to improve performance [25]. The field has seen a dra-
matic increase of research into all kinds of visualization techniques involving
volumetric data. Most volumetric data originates from either computed tomog-
raphy or magnetic resonance scans, which do not yield a direct mapping to
appearance attributes (i.e. color and texture of the scanned tissue). An obvious
field of research is therefore to provide proper color and texture to this other-
wise appearance deficient data. The visible human project is one such example,
where a male and female body has been scanned, and subsequently cut and
photographed to obtain the correlation between density and appearance. One
method with which to color the data, is the use of a transfer function [44].

Many methods for creating transfer functions exist. From a simple pre-defined
function capable of transforming between two number domains, to a user defined
transfer function allowing for iterative refinement through user input [23]. In
most cases, user input is desirable since the transfer function is often used as a
tool to highlight or hide specific features in the volume data.

Other approaches include Dong and Clapworthy [29], who use 2D input exem-
plars to apply and synthesize texture to a volumetric volume simultaneously.
By analyzing the orientation of each voxel in the volume data a patch based
synthesis strategy is applied to apply and expand the 2D exemplar to the vol-
ume.

Lu et al. [79] expand upon an existing 2D synthesis algorithm to create a flexible
system for volume illustration. By extending the concept of Wang Cubes into
the third dimension Lu et al. create a tileable solid texture set.

Manke and Wünsche [82] provide a formal framework for applying solid textures

98 Anisotropic 3D texture synthesis with application to volume rendering

to a volume, similar to the work in this paper. They also present methods for
dealing with discontinuous mapping. In contrast to this paper, however they
do not touch upon the scaling or periodicity issues of applying a repeating solid
textures to a volume.

In this paper, we use a simple, piecewise constant transfer function which maps
voxel intensities to entire texture volumes, similar to Manke and Wünsche [82].
Subsequently, the color values at the given position in the volume are obtained
by lookup in these texture volumes. The voxel density is used as an indicator
for opacity. The textures are applied in a multi-scale fashion to minimize the
periodicity, which is further described in Section 8.6.

8.3 Overview

It has been our overall goal is to improve the visualization of CT scanned data.
By applying a solid texture to the data via a transfer function, we are able to
increase the visual detail at a minor cost to the computations required.

We employ the texture optimization method presented by Kopf et al. [63], to
synthesize our anisotropic textures. There is a large overlap with our description
and [63]. This is partly to highlight particular details of our implementation and
partly to make the present paper more self-contained.

Unfortunately, the aforementioned texture synthesis method does a poor job
of synthesizing textures with only low frequency features. This leads to some
muscle textures being comparable to base noise textures with similar colors.

Due to computational limitations, synthesizing solids larger than 128x128x128
is not feasible. This presents a number of scale and periodicity issues which we
explore in sections 8.6 and 8.7. In short, we apply the synthesized texture in
multiple scales to allow for fine and rough effects. We still make use of the CT
data to add additional rough detail.

The results of these iterative improvements are compared and discussed, also in
section 8.7.

8.4 Solid Texture Synthesis 99

8.4 Solid Texture Synthesis

As previously explained, texture optimization is an iterative method where the
difference between the input exemplar and the synthesized solid is minimized.
The difference is measured by a global texture energy function which compares
fixed sized 8x8 2D neighborhoods. For now, let us assume that each voxel/texel
defines its own neighborhood. We define a simplified global texture energy
function, similar to the one by Kopf et al. [63]:

E(Ns, Ne) =

c∑
i=1

‖Ns,i −Ne,best‖r. (8.1)

The neighborhoods in the synthesized solid and input exemplar(s), are denoted
by Ns and Ne respectively. The total number of number of neighborhoods
from the synthesized solid (Ns) is denoted c. The i’th vectorized neighborhood
in the solid is denoted Ns,i, and its closest match (in L2 norm) in the input
exemplar(s), is denoted by Ne,best. The exponent r = 0.8 makes the function
more robust against outliers [63, 66].

Initially, the synthesized volume is comprised of randomly selected texels from
the input exemplar. The volume is then iteratively improved to resemble the
input exemplar(s). The process is comparable to an expectation maximization
algorithm. We first find the ”best looking” parameters, then we optimize based
on those findings, and repeat the process.

Figure 8.1: Exemplars on the three planes orthogonal to the main axes.

As mentioned previously, comparing the synthesized texture to the input ex-
emplar(s) is done by comparing fixed sized 8x8 neighborhoods. These neigh-
borhoods are extracted from both the synthesized volume and the input exem-
plar(s). However, there is not - as previously mentioned - one neighborhood

100 Anisotropic 3D texture synthesis with application to volume rendering

assigned to each voxel. Rather, each voxel is indirectly related to the neighbor-
hoods that includes it.

Synthesis NBs

Figure 8.2: Density of neighborhoods on both exemplar and synthesis textures.

On the input exemplars, these neighborhoods lie on a densely populated grid,
since we want to use all the available information provided to us, about the
texture to be synthesized. In the synthesized volume the neighborhoods lie on
a sparse grid (spaced 1 voxel apart like Kopf et al. [63]), and only on planes
orthogonal to the three main axes of our coordinate system, as shown in Figure
8.1. This serves to reduce computation time and avoid re-sampling issues.

Figure 8.2 visualizes the sparse grid upon which the synthesized neighborhoods
lie. A given voxel - highlighted in blue - is a member of 16 on any given plane,
due to the synthesized solids toroidal boundary conditions.

Once the all the neighborhoods have been extracted, the ”best looking” param-
eters are then found by locating the least different neighborhood in the input
exemplar(s), for each neighborhood in the synthesized volume. Once found,
each voxel is assigned a new value based on texels in the corresponding best
matches of the neighborhoods overlapping that voxel. Essentially averaging all
the contributions to make a new color:

8.4 Solid Texture Synthesis 101

Sv =

∑
sv∈Ns

tNe,best

csv
. (8.2)

The new color assigned to the voxel in the synthesized solid, denoted sv, is an
average of several existing color values. The above equation states that for each
neighborhood Ns the voxel is a member of, we find the matching texel t, in the
best matching neighborhood Ne,best. This sum is finally divided by csv , which
denotes the number of neighborhoods the voxel sv is a part of.

Figure 8.3: Neighborhoods on the three planes orthogonal to the main axes matched
to input exemplar neighborhoods.

Figure 8.3 visualizes equation 8.2 in practice. In our sparsely populated grid on
the synthesized solid, a single voxel is member of 16 neighborhoods on a single
plane orthogonal to a main axis. Since we have three such planes, visualized
as blue, yellow, and green in figure 8.3, the voxel is a member of a total of 48
neighborhoods. Each of these neighborhoods has a corresponding match in an
exemplar. The texel overlapping the same position in each of these neighbor-
hoods contributes to the sum, which is eventually divided by the total number
of contributions (in this case 48), yielding the new color.

The optimization algorithm is actually performed on multiple levels of differing
quality. The synthesized solid initially consists of 32x32x32 voxels, and input
exemplar(s) are scaled to 32x32 respectively. Once the synthesis process reaches
certain conditions, outlined in section 8.4.5, the volume is scaled up to 64x64x64

using trilinear interpolation. Due to computational restrictions of performing
a nearest neighbor search in a high dimensional space, the synthesis is only
performed up to a resolution of 128x128x128.

102 Anisotropic 3D texture synthesis with application to volume rendering

8.4.1 Approximate Nearest Neighbor

In a standard-RGB texture, an 8x8 neighborhood consists of 192 values. Finding
the nearest neighbor in a 192 dimensional space is a computationally expensive
operation.

We apply the same optimizations as Kopf et al. [63] to reduce the computation
complexity. A principal component analysis is performed on the neighborhood
vectors from the exemplar(s). By only preserving the coefficients required to
maintain 95% of the variance, we can typically reduce the number of dimensions
by half, or more.

We also employ the ANN: Approximate nearest neighbor library [89]. The
library accepts a value E , and returns an approximate nearest neighbor guar-
anteed to be at most E + 1 away from the true nearest neighbor. We employ
E = 2 as dictated by Kopf et al. [63].

8.4.2 Weighting Scheme

As previously mentioned in section 8.4, using an exponent of 0.8 in equation 1,
causes it to be more robust against outliers. However, minimizing the L1 norm
is more cumbersome than minimizing the L2 norm. So instead we introduce a
weight into the equation and rewrite the terms of the energy function (1) to the
following (similar to Kopf et al. [63]):

‖Ns,i −Ne,best‖r = ‖Ns,i −Ne,best‖r−2‖Ns,i −Ne,best‖2

= ωe,best‖Ns,i −Ne,best‖r.
(8.3)

where ωe,best = ‖Ns,i−Ne,best‖r−2. This leads to the following quadratic formula
which we seek to minimize:

E(Ns, Ne) =

count(Ns)∑
i=1

ωe,best‖Ns,i −Ne,best‖2. (8.4)

Equation 4: Improved energy function.

The weight parameter ωe,best makes sure that the exemplar neighborhood closest
to a given synthesized neighborhood, carries the most weight. Instead of a

8.4 Solid Texture Synthesis 103

straight average as applied in equation 8.2, we are now calculating a weighted
average which leads to the following formula when calculating a new voxel value:

Sv =

∑
sv∈Ns

ωe,besttNe,best∑
sv∈Ns

ωe,best
. (8.5)

Instead of dividing the sum by the total number of contributors, we now divide
by the total amount of weight distributed among the contributions.

8.4.3 Meanshift

Although adjusting each contributing texel with a weight parameter yields bet-
ter results and speeds up convergence, there are still numerous textures which
fail to produces acceptable results. One persisting issue is that outliers still
contribute to the final result, even if their contribution is minimal.

In order to minimize contribution from outliers, Kopf et al. [63] employ a clus-
tering approach, proposed by Wexler et al. [128]. In short, every contributing
texel is considered to be a cluster. These clusters are then merged depending
whether their center is within a distance of τ to one another. If any new clus-
ters emerge, the process of searching and merging is repeated, until no further
clusters form. Only texels from the dominant cluster end up contributing to the
new voxel value.

The threshold τ is decreased with each iteration over the course of a single
resolution level convergence. Once the synthesized texture converges on a single
level, the thresholding value τ is reset. We found that setting τ = 10, τ = 0.05,
and τ = 0.01 worked well in many cases, on the lowest, medium, and highest
resolution level, respectively.

8.4.4 Histogram Matching

The previously mentioned modifications to the original synthesis method, speeds
up convergence and minimizes the impact of outliers. However, the algorithm
will occasionally converge at certain minima, which fail to make full use of the
exemplar(s) details.

Kopf et al. [63] address this issue by utilizing histogram matching. The weight
each texel carries is further adjusted, based upon whether its contribution will

104 Anisotropic 3D texture synthesis with application to volume rendering

increase, or decrease, the similarity between the histograms of the input exem-
plar, and the synthesized solid. Practically, they achieve this by keeping track of
a 16-bin histogram for each of the input exemplars’ channels. Usually, this is just
the red, green, and blue channel. Kopf et al. also note the importance of keep-
ing this histogram up to date during each ”maximization” phase. Otherwise,
the method will just overshoot the intended histogram and overcompensate in
the following iteration.

When synthesizing anisotropic textures we maintain one histogram per input
exemplar. We let each contributing texel pull in the direction of its exemplars
histogram, which seems to work well. Just like Kopf et al. we also traverse the
voxels in a random order, to avoid any directional bias.

Histogram matching is an integral part of creating the best results possible
via texture optimization. It makes the algorithm take global statistics into
consideration while still allowing for the use of a small neighborhood window.
Histogram matching also speeds up convergence significantly.

8.4.5 Synthesis Convergence Conditions

We found that a fixed number of iterations yielded the best result with most
textures (J. Kopf, pers. comm.). Iterating 100 times on the lowest resolution,
20 on the next level, and 10 on the highest level, worked well with most textures.

8.5 Exemplar Acquisition

As with every other texture synthesis method, we require exemplars of the
texture we intend to synthesize. Our exemplars were obtained using a 12.1
megapixel camera, Canon IXUS 120IS, in a well lit setting. Originally, we
intended to obtain samples using a multispectral color and texture measurement
vision system. This system measures up to 20 different bands across the visible
and non-visible spectrum. These precise measurements are then combined to
a final standard-RGB image. However, most household cameras actually yield
more vivid and realistic colors as each sensor integrates a wider range of the
spectrum than the more precise instrument.

8.6 Rendering 105

8.6 Rendering

To visualize the volumetric data, a simple ray casting technique [45] is applied
using the GPU. To obtain the start and end point for each ray, two rendering
passes are performed of a cube showing the front- and backface respectively.
The cube acts as our rendering proxy and yields the start and end position for
each ray, which is recorded into a buffer using the fragment shader.

An additional rendering pass is then performed where the fragment shader traces
a ray through the space enclosed by the cube. The ray is traced with 0.001
increments in relation to the unit cube around the volume, and accumulates
more color and opacity as it traverses the volume. The ”ray-color” starts off
black and completely transparent. For each step through the volume, the current
density is classified as air, skin, fat, meat, or bone, according to the Hounsfield
scale [41]. Its contribution to the overall ”ray-color” as well as ”remaining
transparency” is calculated by the following formulas:

Rrgb = Rα ∗ l ∗Drgb ∗Dα

Rα = Rα ∗ (1−Dα)
(8.6)

The contribution added to the existing color and transparency value of the ray
is denoted as Rrgb. The amount of contributing light via simple lambertian
shading [46], is denoted l. The contributing color and transparency from the
classified density is denoted Drgb and Dα respectively. When ”ray-color” is
completely opaque, the ray traversal is stopped.

Setting Drgb in Equation 8.6 to the color from the appropriately scaled solid
texture produces a result with significant periodicity at high magnification and
almost uniform color at low magnification (because of mipmapping). This can
be seen in Figure 8.5, in the top and bottom left. To ameliorate these issues,
we combine the texture at three levels of scaling, and Drgb is computed as
illustrated in the next equation.

Drgb =
D1
rgbf

1 +D2
rgbf

2 +D3
rgbf

3

f1 + f2 + f3

irgb = Drgb ∗ int− tthreshold
Dfinal = Drgb + irgb.

(8.7)

The color contribution consists of three differently scaled textures D1−3
rgb and an

associated weight factor f1−3. For each tissue, the scales differ approximately

106 Anisotropic 3D texture synthesis with application to volume rendering

Figure 8.4: Three synthesized solids and their two input exemplars (pig muscle
tissue). The left and middle synthesis’ yield an unsatisfactory result.

Figure 8.5: Three differently scaled muscle textures combined to create the final
result. The top and middle segment show zoomed in areas to show finer detail.

8.6 Rendering 107

Figure 8.6: On the top, volumetric data from the pig carcass, visualized without
enhanced graphics. The colors for the meat, bone, and fat tissue are the average color
values of the textures applied on the right. On the bottom, volumetric data from
the pig carcass, visualized with enhanced graphics. The highlighted sections in yellow
indicate the zoomed section displayed on the right.

108 Anisotropic 3D texture synthesis with application to volume rendering

a factor of 10, and the weight factor is always highest for the macro texture
(approximately 3 to 1). Density is contributed to the final color value Dfinal via
irgb. The value int represents a scaled measure of the density at that point in the
volumetric data, and tthreshold denotes the density threshold of the contributing
tissue. The result of combining the three synthesized muscle textures, along
with the density modifier, is visualized in Figure 8.5.

An exception to the calculation outlined in Equation 8.7 is the skin color con-
tribution which yields a constant average color of sampled pig skin, permeated
by simplex noise [97] to give some variation to the surface.

The transparency value for either fat, muscle or bone is calculated via the fol-
lowing formula:

Dα = max(0.3, int+ 0.25). (8.8)

Skin has a constant translucency of 0.75, and air is completely transparent.

8.7 Results

We implemented the method described in this paper entirely in C++. The time
required to generate a 1283 solid depends primarily on the size and richness of
the input exemplars. On an Alienware m17x model (using only a single core) the
synthesis of our three tissue types would usually converge after approximately
2-3 hours. It was our experience that the algorithm generated the best textures
when only forcing two of the three dimensions to conform to input exemplars,
regardless of whether isotropic, or anisotropic synthesis.

As previously mentioned in section 8.3, the synthesis algorithm has trouble
synthesizing 3D textures based on input exemplars with primarily low frequency
features. The two initial attempts in figure 8.4 show how the final synthesized
solid ends up looking almost nothing like the original two textures used as input.
The third synthesized solid is much more promising.

A question of scale arises when choosing how much surface a single exemplar
should cover. To ensure we acquired as homogeneous a sample as possible, and
preserve detail, we chose to use exemplars covering a small area of approximately
2x2 cm.

As previously mentioned in section 8.6, the final color value of a voxel is modified

8.7 Results 109

by a simple mapping of the current density. The density modifier allows for a
number of low frequency details to show, as is visualized in Figure 8.7.

Figure 8.7: Two hams, with and without density value modification. The highlighted
sections in yellow indicate the zoomed section displayed on the bottom.

The final result of the visualized volume data with all the aforementioned tech-
niques applied is shown in Figure 8.6.

We perform a preliminary benchmark of the applied synthetic textures by ro-
tating the volume one complete turn, around the y-axis, as seen in Figure 8.8.

Std. Graphics Enh. Graphics
Min. Fps 55,3125 56,875
Max. Fps 46,84566889 46,89826405
Avrg. Fps 63,77933111 66,85173595

Table 8.1: Preliminary performance measurements.

The application of the synthesized textures only requires three additional texture
lookups per visualized voxel. Since texture lookups are implemented on the
hardware level, it comes as no surprise that the performance loss is minimal, as
seen in Table 8.1. However, creating the synthesized textures is another matter.

110 Anisotropic 3D texture synthesis with application to volume rendering

Figure 8.8: The volume data rotation pattern of the preliminary benchmark. Unen-
hanced pig visualized.

Due to the complexity of a nearest neighbor search in a high dimensional space,
performing the synthesis in real-time is an impossibility.

8.8 Conclusions and Future Work

We have utilized an existing texture synthesis approach to produce three anisotropic
textures, which were then applied to volumetric data via a custom transfer func-
tion, improving upon the original colorless data.

The technique can potentially be applied to any type of volumetric data and is
not necessarily constricted to organic tissue.

Although the result has improved significantly, there is still room for improve-
ment.

Our light model is simplistic. Better modeling of how light and meat interact
would be an obvious next step since, recently, techniques for real-time interactive
computation of translucent surfaces have started to appear, e.g. [122].

As mentioned in the previous section, we modify the final color slightly via
the density of the volumetric data. While this adds significant detail to the
final visualization, it also introduces a number of artifacts introduced by the
scanning method. Figure 8.9 shows how the data acquisition rays from computed
tomography leaves visible artifacts in the volume data.

Due to time required to perform a complete solid texture synthesis it could be
advantageous to create a larger pre-computed library of multiple tissue types
(in addition to the three described in this paper).

8.9 Acknowledgments 111

Figure 8.9: A close up of the visualized volumetric data showing computed tomog-
raphy artifacts.

Theoretically, it would also be possible to synthesize in-between textures by
using an input exemplar from each tissue type, to smooth the transition between
them. A few practical experiments are required to see how convincing the
resulting solid textures would be.

It would also be interesting to implement and compare the technique demon-
strated by Lu et al. [79]. Using their extension to the wang cube model is also
a way of avoiding periodicity in the applied texture.

8.9 Acknowledgments

We would like to thank Johannes Kopf for the invaluable correspondence during
the development of this paper. We also extend our thanks to the anonymous
reviewers in helping us improve on the paper. This research was supported in
part by the Danish Meat Research Institute. The CT scan of the pig carcass
was also kindly provided by the Danish Meat Research Institute.

112 Anisotropic 3D texture synthesis with application to volume rendering

Chapter 9

Automatic Quality
Measurement and Parameter
Selection for Example-based

Texture Synthesis

Lasse Farnung Laursen, Line Harder Clemmensen, Jakob Andreas Bærentzen
Takeo Igarashi, Bjarne Kjær Ersbøll

Abstract

Texture synthesis algorithms have been researched extensively in
the past decade. However, most synthesis algorithms are governed
by a set of parameters and produce different results depending on
which parameter settings are chosen in conjunction with an exem-
plar used as a basis for synthesis. So far, automatically selecting
parameters suitable for synthesis has been a relatively unexplored
topic. In effect, this makes texture synthesis supervised rather than
fully automatic.

In this technical paper, we propose automatic parameter opti-
mization methods for example based texture synthesis. We cover
research to directly estimate specific texture synthesis parameters,
such as patch size and iteration convergence, based on input tex-
tures. We also examine various similarity measures and evaluate
their effectiveness. The goal for each measure is to properly evalu-
ate how well the resulting synthesis compares to the original input.

114
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

A good similarity measure will enable the search for the optimal tex-
ture synthesis parameters by maximizing the quality of the synthesis
as a function of parameters.

We apply presented methods to a state of the art texture syn-
thesis algorithm, namely the one proposed by Kopf et al [62]. It
is easy to find a set of exemplars for which there is no single op-
timal set of settings. The results show a promising foundation for
further research in establishing an automated optimal synthesis for
a multitude of textures.

9.1 Introduction

Textures are commonly used in computer graphics to enhance the appearance
of a scene. Despite the abundance of online texture repositories [1–6], the acqui-
sition of new textures still poses challenges. Example-based Texture Synthesis
mitigates this issue by artificially creating new textures from a small input ex-
ample.

Like most other texture synthesis algorithms, example-based texture synthesis
requires manual parameter tweaking to obtain the optimal result in the short-
est amount of time. The proper settings aid the algorithms in detecting and
recreating the structure present in the examples provided.

We examine two general approaches to improving a state of the art texture syn-
thesis algorithm presented by Kwatra et al. [66] and further refined by Kopf
et al. [62]. The texture synthesis algorithm works by minimizing an energy
function describing the difference between the input texture(s) (exemplars) pro-
vided by the user, and the texture being synthesized. This is effectively done by
finding matching texture patches (neighborhoods) and iteratively altering the
synthesized patches to look more like the input exemplar(s).

In our first approach we examine methods with which to automatically estimate
the optimal synthesis parameters by examining the input exemplar. In the
second, we evaluate methods with which to provide a qualitative measure for
the resulting synthesized texture. A reliable qualitative measurement would
allow us to maximize the quality of the synthesis as a function of the input
parameters. We propose a heuristic with which to automate the tweaking of the
synthesis parameters based on the qualitative measurement.

The structure of this report is as follows: Related work to both presented ap-
proaches is discussed in section 9.2. The texture synthesis algorithm these ap-

9.2 Related Work 115

proaches are applied to, as well as its associated parameters, is detailed in section
9.3 and 9.3.1, respectively. Work involving the direct estimation of parameters
is presented in section 9.4, while section 9.5 covers the indirect estimation of
parameters via a qualitative measure. Preliminary results of the direct method
is presented in section 9.4, while more comprehensive results from the indirect
method is detailed in section 9.6. Current limitations of both approaches is pre-
sented in 9.7. We conclude our findings in section 9.8 and discuss future work
in section 9.9.

9.2 Related Work

We first present work related to the texture synthesis algorithm to which we
apply automated parameter selection. We then detail work specifically related
to the direct and indirect parameter optimization approaches.

Additionally, a number of papers exist that present altered and enhanced ver-
sions of existing texture synthesis methods, for the purposes of accelerating
them. Although this is somewhat removed from the topic of automatic parame-
ter selection, it shares a similar goal. The accceleration of the texture synthesis
algorithm while attempting to maintain a quality result. We note a few publi-
cations presenting the aforementioned type of research.

9.2.1 Texture Synthesis

A large body of work within texture synthesis research [125] has led to the
algorithm presented by Kopf et al. [62].

Texture synthesis algorithms have evolved over the past decade from being
parametric [52] to non-parametric [27], pixel [127] and patch-based [67], to
optimization-based methods [62, 66]. As previously noted, the publications
have focused on either presenting a new and different approach, or evolving an
existing method to produce better results. A recent publication [124] has even
focused on reverse texture synthesis, which compacts an existing texture down
to a smaller representation, from which a new texture is more easily synthesized.

We present results of automatic parameter selection conducted on the optimization-
based approach described by Wexler et al. [128], applied by Kwatra et al. [66]
and further refined by Kopf et al. [62].

116
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

9.2.2 Direct Parameter Optimization

To the best of our knowledge, no paper exists with the explicit goal of optimizing
the given parameters of a texture synthesis algorithm, apart from the paper
presenting the algorithm itself or iterative work upon the same. This is not
especially surprising, given that the type of parameters eligible for optimization
depend entirely on the synthesis algorithm itself. In this report, we focus on
examining exemplar based texture optimization.

A parameter suitable for direct optimization is the size of the aforementioned
neighborhoods used during synthesis. Section 9.4 provides a more detailed ex-
planation to this effect. Briefly, the optimal neighborhood size is the smallest
possible size, while still encompassing all unique structures captured in a tex-
ture. Hong et al. present a novel method with which to estimate texture scale
[54] and apply it to set of highly periodic brodatz textures [15].

9.2.3 Indirect Parameter Optimization

Similar to direct parameter optimization, to the best of our knowledge, no paper
exists that specifically investigates the impact of varying parameters used during
texture synthesis, for the purposes of making the algorithm fully automatic.
However, within the broader spectrum of general computer science research,
automatic parameter tuning based on an algorithms final result is common.

The automatic tuning of parameters with regards to a quality measure is some-
times called a metaheuristic, and is a subfield of stochastic optimization. A
large body of work exists within this field dating back to the early 1950s. Luke
and Talbi each provide a perspective over the current state of these types of
algorithms as well as implementation based examples [80, 113]. Nanono et al.
provide multiple concrete applications of parameter tuning in modern computer
science problems [90].

9.2.4 Accelerating Texture Synthesis

Because texture synthesis is a computationally demanding task, it is only natural
that research into improving performance or alleviating the calculatory burden
exists. Lefebvre and Hoppe [77] extend Wei and Levoy’s 2D synthesis approach
[126] by parallelizing it and implementing it on modern GPU hardware.

9.3 Texture Optimization 117

Manke and Wünsche [83] extend Lefebvre and Hoppes approach allowing it
to synthesize solid textures while executing on a modern GPU. Their paper
provides a thorough explanation and a speculative GPU performance forecast,
but their implementation is limited to a software prototype running in C++.

Dong et al. [30] present a novel method that synthesizes solid textures to cover
the surface region of a given mesh. Their approach yields impressive results at
high speeds, but due to their reliance on precomputed seamlessly interconnected
neighborhoods, the algorithm can introduce a bias during synthesis, eliminating
potentially significant features.

Recently, Barnes et al. have presented an algorithm that significantly increases
the speed of finding the best approximate match for a patch in a given texture
[11].

9.3 Texture Optimization

The synthesis algorithm we test our methods on was originally presented in
Kopf et al.’s paper [62], and more thoroughly detailed in a related research
paper [72]. In this paper we will restrict our explanation of the algorithm to
the portions where we deviate from the aforementioned descriptions, as well as
portions related to the synthesis parameters which we tweak and analyze.

In short, the texture optimization algorithm attempts to minimize an energy
function describing the difference between the input exemplar and the texture
being synthesized. A simplified version of the function detailed by Kopf et al.
is

E(Ns, Ne) =

ns∑
i=1

‖Ns,i −Ne,best‖r. (9.1)

The input parameters (Ns) and (Ne) represent the texture being synthesized
and the input exemplar respectively. To measure the energy difference between
Ns and Ne, small texture patches (usually 8 by 8 pixels) are extracted and com-
pared. The total number of patches (a.k.a neighborhoods) from Ns is denoted
ns. For each of the neighborhoods extracted from the synthesized texture Ns,i,
its corresponding best match (measured via L2 norm distance) is subtracted
(Ne,best). The sum of differences describe the energy difference between the two
textures. Setting the exponent r = 0.8 in the energy function keeps it more
robust against outliers [62, 66].

The synthesis algorithm progresses through several levels of detail, starting with

118
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

a coarse 32x32 resolution synthesis texture, comprised of random samples from
the input exemplar. For each extracted synthesis neighborhood, the approx-
imate best matching neighborhood is found. Finally, every pixel is updated
based on those best matching neighborhoods. The process is comparable to an
expectation maximization algorithm. The best matches are found, the whole
texture is improved, and finally the process repeats itself.

The neighborhoods extracted from the synthesized texture lie on a sparse grid
spaced 2 pixels apart as shown in Figure 9.1, where as neighborhoods extracted
from an exemplar lie on a densely populated grid. In the dense grid, each pixel
can be thought of as representing a single neighborhood.

Figure 9.1: Density of extracted neighborhoods in the synthesis texture. Visualized
are all the 8x8 neighborhoods which the blue highlighted pixel is a member of.

Since the exemplar used to synthesize a new texture usually contains color,
each vectorized neighborhood is comprised of 192 values, consisting of three
color channels for each of the 8x8 pixels in the neighborhood. Finding the best
matching exemplar neighborhood for each synthesized neighborhood is a com-
putationally expensive task in such a high dimensional room, so prior to find-
ing matches, the dimensionality of the neighborhoods is reduced using principal
component analysis (PCA) to a state where 95% of their variance is still retained

9.3 Texture Optimization 119

(σ = 0.95). To further increase the speed of searching for each neighborhoods
nearest neighbor, an approximate nearest neighbor algorithm is utilized from
the ANN Library [89]. It requires a distance parameter ε to be set, which is
usually set to 2 [62], guarenteeing that all found neighborhoods lie no further
than 1 + ε, times the optimal match distance, away.

Once the approximate best neighborhoods have been located, the algorithm
employs a clustering approach proposed by Wexler et al. [128] to reduce the
number of contributing neighborhoods to a single pixel. This speeds up conver-
gence by removing outliers and constrains the neighborhoods, that each pixel is
a part of, to a group that contribute a similar color.

Additionally, the texture optimization approach employs a histogram weighing
scheme that prunes contributions which overshoot the current amount of color,
in the respective channel, for the pixel being updated. This ensures overall
global correspondence to the input exemplar, while the neighborhood matching
serves to increase local spatial correspondence.

In some cases it is beneficial, and occasionally a requirement, to attach a feature
map (as an additional channel) in order to produce a satisfactory result, when
synthesizing a troublesome texture. The feature map basically assigns a weight
to each pixel, indicating its importance with regards to the textures structure.
This weight can be adjusted as necessary, if the algorithm is having trouble
reproducing the pattern found within the texture.

9.3.1 Synthesis Parameters

Texture optimization provides multiple adjustable parameters. This section re-
iterates the ones we believe are most significant, along with a brief description.
How each parameter is affected during direct and indirect optimization is ex-
plained in sections 9.4 and 9.5, respectively.

• Neighborhood size — The size of the texture patches compared in be-
tween the input exemplars and the texture being synthesized. Kopf et al.
define the default Neighborhood size as 8 by 8 pixel.

• Neighborhood grid density/sparsity — The density/sparsity of neigh-
borhoods extracted from the exemplar and synthesis textures. Kopf et al.
extract neighborhoods from a dense grid on exemplars, and from a sparser
grid (2 pixels apart) on the synthesized texture.

• Neighborhood dimension reduction (σ) — The method and severity

120
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

with which the dimensionality, of the vectorized neighborhoods, is reduced.
In the method proposed by Kopf et al., the variance is reduced to 95% by
using PCA.

• Convergence — The method with which convergence of the synthesized
texture is determined. Kopf et al. use a set number of iterations for each
level of detail (Johannes Kopf, personal communication, March 10, 2010).

• ANN Distance (ε) — A parameter defining that the best matching
exemplar neighborhood, found for a given synthesized neighborhood, is
guaranteed to be no further than 1 + ε times the distance to the actual
closest exemplar neighborhood.

• Histogram matching weight adjustment — When a new color is de-
termined for a given synthesis texture pixel, each contributing color is
compared with the already existing color contribution in the whole syn-
thesis texture. If the amount of color in the synthesized texture is higher
than that of the exemplar texture, then the contribution is punished as
detailed by Kopf et al. [62]. This value is further amplified by a static
weight parameter. Setting this parameter value to zero will nullify the
effects of histogram matching completely.

• Clustering algorithm — The clustering algorithm intended to accelerate
convergence and remove outlying contributors. A meanshift algorithm is
employed by Kopf et al. with a number of threshold parameters.

• Feature map channel — The feature map represents an individual
weight parameter for each pixel (or voxel) in the input exemplar(s). The
static weight associated with the feature map can be adjusted as needed
for the synthesis algorithm to converge successfully.

9.4 Direct Parameter Selection

Most of the parameters associated with the texture optimization algorithm pre-
sented by Kopf et al. [62] affect unique portions of the algorithm itself. We apply
methods specifically aimed at automatically selecting the individual parameters
presented below.

• Neighborhood size — Kopf et al. [62] note that the use of histogram
matching allowed for the use of small neighborhoods (8x8), while still
recreating the features of the original input exemplar. While this is true,
our empirical testing revealed improved results with certain 2D textures
using a larger neighborhood size, as visualized in figure 9.10.

9.4 Direct Parameter Selection 121

The optimal neighborhood size is undoubtedly dependent on the textures
used as input. Recreating the features found in these textures, is a question
of scale. A larger neighborhood is more suitable to properly recreate the
features of a texture with a larger scale, where as a smaller neighborhood
is suitable to a texture with a smaller scale, as visualized in figure 9.2.

Figure 9.2: An approximation of the ideal neighborhood size given two differently
scaled textures. On the left, the brick wall with the much bigger scale

• Convergence — As previously mentioned, Kopf et al. use a set number of
iterations for each level of detail (Johannes Kopf, personal communication,
March 10, 2010).

Through empirical testing, we have determined that certain texture will
converge much faster than others during synthesis. An approach mea-
suring convergence would avoid wasting computational power by stopping
the synthesis after an acceptable result has been achieved.

Optimization of the remaining parameters is beyond the scope of this report.

9.4.1 Neighborhood size estimation

As previously mentioned in section 9.2, Hong et al. [54] present a novel method
with which to estimate texture scale, using the following scale descriptor applied
on each neighborhood Ne:

inf
r
D(Ne,r, Nen,r)− αH(Ne,r) + βr(x). (9.2)

122
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

Texture Mean Median
Brodatz (a) 22.3423 21
Brick wall (b) 17.6359 15
Zebra stripe (c) 24.3031 27
Animal Skin (d) 26.5022 27
Big Brick (e) 10.7212 9
Small Brick (f) 17.8322 27

Table 9.1: The mean and median of the scales estimated for every pixel in figure 9.3.

The equation minimizes the energy measured by three terms, using the variables
Ne,r, Nen,r, and r. The current neighborhood with a ”radius” r (height and
width), is denoted Ne,r. It’s surrounding neighbors is denoted Nen,r. The first
term measures differences between the two regions either via Kullback-Leibler
or Wasserstein distance. In this report we focus on the Wasserstein distance, as
it yielded more reliable results during testing. The second term compensates for
comparing homogenous patches, by reducing the energy proportionally to the
amount of entropy measured in the neighborhood patches. Finally, the last term
ensures that the equation favors patches with as small a size as possible. The
weight parameters α and β are set to 0.001 and 0.1, respectively, as suggested
by Hong et al. [54].

We applied Hong et al.s method to one of the brodatz textures [15], as well as a
number of textures used by Kopf et al. [62], visualized in figure 9.3. Table 9.1
display the measured mean and median for each of the textures.

(a) (b) (c) (d) (e) (f)

Figure 9.3: The top row shows the original textures, along with the median neigh-
borhood estimated from every single pixel as a red box in the texture. The same
neighborhood size is also visualized immediately below the texture. The bottom row
is a scale map representation of each of the textures, obtained by applying Hong et
al.s energy equation 9.2, where each pixel is given an intensity matching the estimated
best neighborhood size surrounding that pixel. The more intense the pixel, the larger
the estimated neighborhood for that location.

9.4 Direct Parameter Selection 123

The results do not always correlate directly with the size of the structural ele-
ments in the textures. The most striking example of this is the estimation of
scale for the big bricks (e) and the smaller bricks (f). This is likely the cause
of the homogeneous nature of the large gray areas contained within the brick
texture which lead to a high similarity in the first term of equation 9.2.

Although the method delivers some results similar to our own estimation of
optimal neighborhood size, there are also notable failure cases, such as the big
bricks (e) and the smaller bricks (f).

We consider two alternative methods of estimating texture scale, based on an
analysis of the relationship in between the neighborhoods:

9.4.1.1 Neighborhood Clustering

Texture Optimization [62] uses clustering as a means to speed up convergence,
by discarding contributions which are not a part of the dominant cluster while
updating a single pixel. As previously shown in figure 9.1, several neighbor-
hoods contribute to a single pixel, and mean-shift clustering ensures that only
contributions from the main cluster is retained.

This type of clustering approach could also be used as a scale descriptor. By
expressing each neighborhood of a texture as a point in a high dimensional
space, it may be possible to estimate scale based on this distribution. For each
neighborhood size, meanshift clustering is applied to determine the dominant
cluster. The optimal neighborhood size would have the biggest cluster.

There are issues that require further attention while implementing this approach:

• Neighborhood Size — As the size of the neighborhoods increase in an
attempt to find the biggest cluster, so does the number of dimensions
that each neighborhood ”point” lies on. Principal component analysis is
a useful tool in both reducing calculatory complexity as well as limiting
the number of dimensions for each ”point”. However, it would still be
necessary to include a weight parameter for the purposes of counter bal-
ancing this increased difficulty in clustering due to the higher number of
dimensions.

• Meanshift Threshold — The meanshift clustering algorithms works
with thresholding values that would need to be adjusted empirically to
determine an optimal setting for the majority of textures. Since the point
is to automatically estimate parameters, and not replace these with other

124
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

parameters, the thresholds should either be established automatically or
perform well for all textures of a given type.

• Mahalanobis distance — The distance between neighborhoods in the
high dimensional space could potentially be better estimated using the
mahalanobis distance, instead of the euclidean distance.

Neighborhood Tree Structure An alternate approach of examining the re-
lationship in between neighborhoods is by building a tree structure representing
nearest neighbors. Starting with a random neighborhood from the input ex-
emplar, we form a new cluster consisting of that one member. Each cluster is
represented by a single neighborhood, i.e. an average of all the existing neighbor-
hoods in that cluster. We then continuously add the remaining neighborhoods
to the tree structure. If the new neighborhood is within a certain threshold
distance of the representative neighborhood of a cluster, it is added to the same
cluster. Otherwise, it will form its own new unique cluster.

(a) (b)

Figure 9.4: (a) The ideal tree structure where each new neighborhood is added to
the already existing cluster. (b) The worst case scenario where each neighborhood
forms its own cluster.

Figure 9.4 shows both the ideal, and worst case scenario of the tree structure. As
with the clustering method, there are a few issues that require further attention:

• Cluster Representative Neighborhood — The best method of repre-
senting a cluster should be further investigated. One option would be to
pick the neighborhood closest to all other neighborhoods in the entire clus-
ter. An alternate option would be to simply average all the neighborhoods
in the cluster together and use that as a representative. Although the lat-
ter option would likely cause unwanted blurring and should be carefully
considered.

• Distance Threshold — The optimal threshold for determining if a neigh-
borhood is close enough to a cluster to become a member should be em-

9.5 Indirect Parameter Selection 125

pirically tested.

• Mahalanobis distance — Just like with the neighborhood clustering
algorithm, the mahalanobis distance could also be applied here when in-
troducing new neighborhoods to existing clusters.

9.4.2 Convergence estimation

As previously noted, Kopf et al. rely on a fixed set of iterations for each level
of detail, during texture synthesis. We experimented with both the L1- and
L2-Norm applied in conjunction with the energy function (in equation 9.1), as
a useful measurement for synthesis convergence.

We were unable to achieve acceptable results using a fixed and/or dynamic
threshold. A solution might be using a probabilistic metaheuristic to provide a
good approximation to the global optimum, such as simulated annealing [131].

9.5 Indirect Parameter Selection

The core of our indirect parameter optimization method is straightforward. We
attempt to establish an objective measurement of texture quality. Assuming
that this objective measurements correctly identifies the best synthesized tex-
ture among several candidates, then determining the optimal parameters for
a specific texture can be solved using a pure brute force method. If we also
assume that the parameters are at least moderately orthogonal, we can ap-
proach the problem in a linear fashion. By only varying a single parameter,
we can determine its optimal setting. Applying our objective measurements
on each synthesized result while varying one parameter, we determine which
setting produces the best result, for that parameter. We continue until we’ve
determined the optimal setting for each parameter.

We break down the indirect method into five separate steps and detail in each
how we mitigate the complexity arguably without reducing the quality of the
results. For the benefit of the reader, we list the steps in an abbreviated form
below:

1. Select parameters to optimize

2. Select similarity measures

126
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

3. Determine parameter bounds using similarity measures

4. Evaluate results of varying parameters within bounds using similarity mea-
sures

5. Perform automated texture synthesis

These steps are thoroughly detailed in identically ordered subsections below.

9.5.1 Tested Synthesis Parameters

Ideally we would like to measure the effects on all parameters involved in the
texture optimization process. However, certain parameters are arguably harder
to optimize, and the complexity of determining optimal parameters can increase
exponentially the more parameters are involved. Below we detail which param-
eters we vary, and which remain static.

1. Fixed

• Neighborhood Grid Density/Sparsity — Although we firmly be-
lieve that certain textures could easily produce an acceptable result
with a much sparser set of neighborhoods, we’ve chosen to constrain
the complexity of our analysis, and keep the recommended neighbor-
hood sparsity on the synthesized texture as recommended by Kopf
et al.

• Convergence — Similar to Kopf et al. we rely on a fixed set of
iterations per detail scale to achieve a successful synthesis result. We
found that the algorithm almost always converged when using 100,
30, and 10 iterations for the 32, 64, and 128 pixel resolution scale
respectively.

• Feature map — Originally introduced by Wu and Yu [132], feature
maps aid patch-based texture synthesis methods in reproducing the
structure found in the original input exemplar. All original feature
maps require user input and are created artificially. We’ve chosen
to focus on textures that do not require feature maps in order to
produce acceptable results.

• Clustering Algorithm and associated Parameters - Kopf et al.
note in their paper [62] that purely averaging all the contributing
colors for a single pixel might produce blurry results. While this
sometimes occurred during our testing procedure, it is our impression

9.5 Indirect Parameter Selection 127

that blurring, during 2D synthesis, only happened when there was no
way for the algorithm to satisfactorily converge, in a particular region.
Meanshift clustering on the other hand would force convergence and
cause an unsightly seam to appear in its place.

However, we did find that if histogram matching was not applied,
simply averaging all contributors would occasionally cause the syn-
thesis algorithm to yield unsatisfactory results.

We also applied K-Means as an alternate clustering algorithm, and
found that it produced results slightly less favorable when compared
to Meanshift clustering, but had a much faster runtime. Almost com-
parable to simple averaging. Since the best textures were achieved
using straight averaging of all contributors in conjunction with his-
togram matching, we utilize it exclusively during our testing proce-
dure.

• Histogram Weight Adjustment — Originally intended as a non-
static parameter, testing revealed that the best results were consis-
tently achieved with a fixed value. Since there is no computational
gain from varying the parameter (except for turning it off), we’re
keeping it static. Table 9.2 notes which settings were tested, as well
as the permanent setting chosen.

2. Variable

• Neighborhood Size — Kopf et al. suggest using 8 by 8 pixel sized
neighborhoods during the synthesis process. While determining the
upper and lower bounds for this parameter we found this neighbor-
hood size to often be the threshold for where a number of textures
started converging properly.

• Neighborhood Dimension Reduction (σ) — Retaining 95% of
the original textures variance is suggested by Kopf et al. and works
well for all tested textures. A further reduction in retained variance
sometimes shows little to no visual artifacts, where as other textures
will immediatly cease to produce an acceptable result.

• ANN Distance (ε) — Kopf et al. suggests setting ε = 2.0 during
synthesis. A higher setting leads to less exact/faster neighborhood
matching, whereas a lower setting will generally be slower and pro-
duce more exact matches. A side-effect of a low setting (2.0) is that
the algorithm occasionally synthesizes a near exact replica of the in-
put exemplar, albeit with a vertical and horizontal offset. An example
of this can be seen in Figure 9.5.

128
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

Figure 9.5: On the left, the original tomato exemplar used as input. On the right, is
the resulting synthesized 2D texture using the parameters as suggested by Kopf et al.
Notice that the original exemplar has been reproduced in its entirety with the original
edges pointed out by the arrows.

9.5.2 Texture Similarity Measurements

Determining the quality of a synthesized texture might seem trivial at first,
since we are so used to comparing and evaluating what we see as humans.
In fact, stating that people are living, breathing pattern recognition machines
wouldn’t be far from the truth. But in addition to a subjective evaluation,
we are interested in obtaining quantifiable objective measurements. Below we
detail which similarity measures we test to help us determine how successful a
synthesized texture is in recapturing the original textures variety and likeness.

• Subjective comparison — While objective measurements aim to auto-
matically quantify our synthesized results, they cannot capture the human
impression given by the resulting texture. What we perceive remains a
cornerstone of graphics development and as such, the subjective impres-
sion cannot be disregarded. We therefore perform a subjective evaluation
of the results that the synthesis process yields, in addition to the objective
measurements.

• Reverse neighborhood look-up comparison — During the synthesis
process, the approximate best matching exemplar neighborhood is found
for each synthesized neighborhood. Treating each neighborhood as a 192
dimensional vector and calculating the distance using the L2 Norm yields
an objective measurement of how much the textures differ within that
neighborhood region. It seems like an ideal method when applied to all
neighborhoods in order to get a sense of how well the resulting synthesized

9.5 Indirect Parameter Selection 129

texture turned out.

Unfortunately, this is not the case. Matching each synthesized neighbor-
hoods to its best matching exemplar, as done during texture synthesis,
can yield a result indicating high similarity, even if the whole synthesized
texture only resembles a small portion from the input exemplar. Since we
want to punish textures for not making full use of the variance provided
by the input exemplar, we instead match each exemplar neighborhood to
it’s best matching synthesized neighborhood on a dense grid and calculate
the L2 as follows

Diff(Ne, Ns) =

∑ne

i=1(Ne,i −Ns,best)2

ne
. (9.3)

The total number of neighborhoods derived from the exemplar texture
is denoted ne and a single exemplar neighborhood and its best matching
synthesized neighborhood is denoted by Ne,i and Ns,best respectively. Note
the differences between this equation (9.3), and the equation used during
synthesis (9.1):

– For each extracted exemplar neighborhood, the best synthesized
neighborhood is found.

– The actual best match is located during comparison (i.e. ε = 0).

– No dimensionality reduction is performed (i.e σ = 1.0).

– Neighborhoods are sized 10x10, and are extracted from a dense grid
on both the synthesized and exemplar texture.

Texture optimization actively minimizes the difference between synthesis
and exemplar neighborhoods, so there exists a direct coupling between the
process of obtaining a synthesized texture and this particular measurement
of its objective quality. We perform the comparison using 10x10 sized
neighborhoods, as opposed to the default 8x8 setting as suggested by Kopf
et al.

Each channel is scaled to fit between 0..1, and the end result is divided by
the number of neighborhoods extracted from the exemplar. The potential
range for this objective measurement therefore spans between 0 and 192.

This approach is similar to the bidirectional similarity measure presented
by Simakov et al. [108].

• Crude Reverse neighborhood look-up comparison — The reverse
neighborhood look-up comparison test (rnlc test) is computationally expen-
sive. It sacrifices no quality, and will give the best indication of whether
the test itself produces viable results. This crude version of the same test
sacrifices some quality in the hopes of achieving comparable results to the

130
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

rnlc test, at much faster speeds. Compared to the rnlc test it retains 95%
variance (as opposed to 100%), and locates approximate best matches
(ε = 2.0), similar to the settings used during synthesis.

• Global histogram difference — To ensure a global texture correspon-
dence, we calculate the histogram difference between the input exemplar
and the synthesized result via the following equation:

HistDiff(Te, Ts) =

j∑
c=1

k∑
b=1

‖Te,b,c
ve
− Ts,b,c

vs
‖. (9.4)

The variable j denotes the number of channels being synthesized, as de-
termined by the input exemplar. All of our exemplars are RGB colored
and therefore j = 3. The total number of contributing pixels from the ex-
emplar and synthesized texture is denoted by ve and vs respectively. The
number of bins used to compare histograms is denoted k. This similar-
ity measure, like the reverse neighborhood look-up comparison, is coupled
to the synthesis process. Contributing pixels that do not conform to the
exemplars histogram are pruned during synthesis. To minimize the cou-
pling we set k to a maximum of 255 bins, instead of 16 used during actual
synthesis.

If the histograms from the exemplar and the synthesized result are iden-
tical, eqn. 9.4 will yield a zero sum. The most opposite textures (a white
and a black one) would yield a maximum of j ∗ 2 in difference.

9.5.3 Determining parameter bounds

As previously mentioned, we attempt to solve the problem of optimizing our
parameters using linear brute force. The approach is simple, yet functional.
However, it is far too computationally expensive to be viable. There are several
parameters involved and some of them have potentially infinite settings. By only
varying our parameters within fixed upper and lower bounds, we can optimize
the approach arguably without losing any significant resulting quality.

When reducing our parameter search space, we use an extended set of textures,
shown in Figure 9.7. Most textures are from the same set which Kopf et al. [62]
used to produce solid textures with. The remaining few textures originate from
the CGTexture repository [1].

We synthesize results for each permutation of parameter settings to visually
determine the bounds for the parameters (detailed in Section 9.5.1). In other

9.5 Indirect Parameter Selection 131

words, a single test consists of fixing every parameter to the defaults as defined
by Kopf et al. and varying one parameter within a heuristically determined
range. To avoid outliers we synthesize a minimum of four textures and visually
compare these to the original input texture.

A number of parameters have a natural upper bound where neither quality
nor precision is sacrificed, at the expense of computational complexity. For
example, setting the ANN distance (ε) to 0 ensures that the best matching
neighborhood is always found, or keeping 100% of the variance (σ) during the
principle component analysis leads to no reduction in quality. We define this as
the upper bound for these types of parameters. The lower bound is found by
incrementally sacrificing more and more quality until the synthesis algorithm
only produces indiscriminant noise for the majority of test textures. Figure 9.6
shows the synthesis results for three different textures retaining a continously
lower amount of variance, while applying PCA. Note that while all textures
degrade in quality, some degrade much faster than others depending on the
complexity of structure found in the original texture.

Figure 9.6: Synthesized results using three different exemplars. From left to right,
each column shows the end result produced while retaining less variance (σ).

132
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

Figure 9.7: The fourteen different input exemplars we use to determine the various
bounds of the synthesis parameters. The blue highlighted exemplars on the left are
also used to measure the efficiency of our objective measurements.

9.5.4 Evaluate objective measurement

Once the upper and lower and lower bounds have been determined, we continue
our testing with a smaller set of textures (shown in Figure 9.7), due to com-
putational complexity. For each of the four textures, we synthesize a set of 10
textures for each permutation of settings within the bounds determined by the
previous tests. During these tests we apply our objective measurements to each
of the synthesized results to determine how well they reflect the quality of the
texture when compared to the visual impression.

9.5.5 Automated texture synthesis

Finally, we use the objective measurements to perform a small set of automatic
synthesis runs using the objective measurements as guide for our algorithm to
determine the optimal setting for each parameter.

9.6 Indirect Parameter Selection Results

Having selected parameters and similarity measures as detailed in Section 9.5,
we visually determined the upper and lower bounds as listed in Table 9.2, using
the extended set of textures shown in Figure 9.7.

After determining these bounds, we proceed to test our similarity measures as
explained in Section 9.5.4. The similarity measures are tested by completing a
total of 10 synthesized textures per settings permutation using a reduced set of
textures, as shown in Figure 9.7. The results indicate that the global histogram

9.6 Indirect Parameter Selection Results 133

Parameter
Preliminary
Test Settings

Upper bound Lower bound

NB Size
2x2, 3x3, ... 15x15,
16x16, 20x20, 30x30

16x16 5x5

Dimension
Reduction (σ)

0.95, 0.90, ... 0.70, 0.65 0.95 0.75

ANN Distance (ε) 1.5, 2, 3, 4, 8, 16, 28 1.5 12

Hist Punishment
0, 0.5, 1, 2, 4, 8, 16,

32, 64, 128, 1000
128.0 128.0

Table 9.2: The parameters and their settings used during preliminary testing to
determine upper (best quality) and lower bounds (worst quality).

difference measurement does not correlate well with our visual impression of
the quality. It’s not entirely surprising given that it measures global color cor-
respondence and not structural similarity. A concrete example of lacking visual
correlation is shown in Figure 9.8. Using small neighborhoods (2x2 and 3x3)
during synthesis measure as being better than using larger neighborhoods (4x4,
5x5 and 6x6), when using global histogram difference as a similarity measure.
It’s clear that its due to the green tomato stalks missing from these results.
Using bigger neighborhoods, they reappear and the global histogram difference
measurement confirms that these results are better.

Figure 9.8: A synthesized result for different sizes of neighborhoods, using the tomato
picture as input exemplar.

Consequently, the global histogram difference measurement cannot be used to

134
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

Figure 9.9: Three plots showing the results of the reverse neighborhood look-up
comparison while varying the parameters specified in Section 9.5.1. Each plot shows
the average result of 10 tests including std. deviation. The line colors refer to which
texture being synthesized, as detailed in the legend.

singlehandedly determine if a result turns out well or not. The Reverse neigh-
borhood look-up comparison on the other hand correlates well with our visual
impression of the synthesized results. Figure 9.9 shows a general tendency of
an improved result as the approximate nearest neighbor distance is reduced, or
a higher variance is retained. It’s worth noting that the brown dirt texture is
the least affected by a reduction in variance, which the results correlate with.
Figure 9.10 shows the results of applying the optimally detected neighborhood
size along with the default ε = 2.0 and σ = 0.95 settings.

The rnlc test takes near a minute to complete with a mean completion time
of 42.8 seconds and a std. deviation of 26.6 seconds. Fortunately, we found
that the crude rnlc test performs equally well when looking at each texture
individually. Specifically, the objectively measured results closely resemble those
of the regular rnlc test, except for being consistently better or worse. The mean
completion time for the crude rnlc test is 4.6 seconds with a std. deviation of
1.9 seconds. Approximately 10 times faster.

Treating each parameter as orthogonal and performing a linear search through
the parameter settings space occasionally causes the algorithm to select param-
eters which are not ideal, resulting in a sub optimal synthesized texture. To
mitigate this issue, we’ve chosen an order by which the parameters are tuned,
and once an optimal value for a parameter is found, we retain it when tweaking
the remaining parameter. Figure 9.11 shows a comparison between a standard
and optimized synthesis result using the four highlighted textures from Figure
9.7 as input.

The runtime of automatically tuning the parameters is highly dependent on the
complexity of the texture used as an input exemplar. Using the four textures
shown in Figure 9.11, the whole process took process, including synthesizing the
final result, lasted between one and four hours, depending on the texture.

9.6 Indirect Parameter Selection Results 135

Figure 9.10: Synthesized results using the zebra (left) and brick (right) textures
as input exemplars. The first/third column show three different results of using the
parameters suggested by Kopf et al. (neighborhoods sized 8x8) and the second/fourth
column shows the results using the objectively measured optimal neighborhood sizes
(16x16 and 12x12). Below each result is the qualitative measurement calculated via
the rnlc test.

9.6.1 Summary

The extensive testing described in the previous sections have resulted in the
development of the following heuristic, for automatically adjusting parameters
of example-based texture synthesis algorithms.

1. Isolate parameters intended for optimization, and use the crude Reverse
neighborhood look-up comparison test, as described in Section 9.5.2, on a
wide range of settings to determine the upper and lower bounds for each.
In the case of texture optimization, the determined detailed in Table 9.2
work well.

2. Apply a metaheuristic, like linear search, and determine the optimal set-
ting using at least 10 measurements via the crude rnlc test. Optimize

136
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

Figure 9.11: Comparison of the four sample textures synthesized using automatically
detected optimal settings (top row) and standardized settings used by Kopf et al.
(bottom row). The quality as measured by the crude rnlc test is listed below each
result.

parameters in the order of approximate nearest neighbor distance, neigh-
borhood size, and PCA variance retention. Once an optimal parameter
has been determined, retain it while optimizing the remaining parameters.

3. Synthesized texture using the determined optimal settings.

9.7 Limitations

Automatic parameter selection is no small task, and in some ways, this technical
report only scratches the surface. The following section sums up the achieve-
ments of our efforts, while this section details short-comings we have identified
with either method.

9.7.1 Direct Parameter Selection

Preliminary findings using direct parameter optimization indicate that the work
by Hong et al. [54] produces suboptimal results in certain cases. Although the
work shows promise, we question whether a probability density distribution
is a sufficiently accurate representation of the different neighborhoods when
determining scale. All spatial information is discarded in this representation
which is limiting.

9.7 Limitations 137

The alternate methods are in the preliminary stages, and therefore not viable
for a proper evaluation of limitations. However, it is clear that both alternatives
have the potential to introduce further parameters into the process, which would
undo the purpose of this research. It is important that these methods either
function well with a set of static parameters, or handle are capable of self-
estimating them.

9.7.2 Indirect Parameter Selection

• Objective Quality Measurement — The crude Reverse neighborhood
look-up comparison generally delivers favorable results. There are however
some failure cases, such as the brown textured result in figure 9.11 having
a much lower score than the standardized version, despite being more
blurry. Additionally, the measured quality of a texture is not monotone
and contains local minima.

Using our determined upper and lower bounds lessens the risk of the al-
gorithm falling into a local minima, but does not eliminate it entirely. It
is also important to note that multiple measurements are required for the
crude Reverse neighborhood look-up comparison test to deliver a consistent
result. Looking at the results in Figure 9.9, its clear that the measurements
can deviate considerably, and to compensate we would recommend mea-
suring the result more than ten times. Since the runtime of the algorithm
is already ’high’ and further tests would only exacerbate the situation, it
would be advantageous to apply a more advanced metaheuristic, such as
simulated annealing.

The high number of measurements required for a reliable estimation,
causes the algorithm to run for several hours. Implementing Barnes et
al.s algorithm [11] should cause a considerable speed up overall.

Finally, it would also be advantageous to extend the similarity measure
to incorporate detection for visual elements we find unappealing, such as
blurring or hard edges. In its current state, the Reverse neighborhood look-
up comparison would highly favor a result that is strikingly similar to the
original input exemplar (such as the result shown in Figure 9.5).

• Parameter Order Bias — Since we’ve selected a fixed order in which we
optimize our chosen parameters, as detailed in Section 9.6.1, we introduce
a potential bias into the system.

• Global Histogram Difference Measurement — This measurement
has some short comings. One of the most critical ones being, a case where
one neighborhood is just a single shader darker than the neighborhood it is
currently being compared to. Currently, the estimate would rate the two

138
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

neighborhoods as very different, although they would optically be quite
similar.

Reducing the number of bins would alleviate the problem. Another solu-
tion would be to apply a histogram less prone to overall shifts in intensity,
such as earth movers distance [102].

• Neighborhood Size — Our objective measurement uses a specific sized
neighborhood and consequently introduces an amount of bias. This bias
could be minimized by expanding the objective quality measure to include
multiple sized neighborhoods, which may be feasible given the computa-
tional optimizations provided by patchmatch [11].

• Quality Vs. Speed — Even with automatic parameter selection, there
is still an implicit trade off between quality and speed. Allowing the user
a single parameter controlling this aspect of the algorithm would be an
improvement on the approach.

• Overall speed — The proposed method is slow when compared to manual
parameter tuning. Apart from using a more advanced metaheuristic to
traverse the search space, it might be possible to tune the parameters
while producing a smaller, and therefore faster, texture patch (instead of
the 128x128 sized result we synthesize currently). The parameters tuned
while producing a smaller texture patch could serve as an initial ’good
guess’. Reducing the amount of information from the input exemplar
could also be achieved by first synthesizing a monochrome version.

9.8 Conclusion

We’ve presented analyzed and presented both direct and indirect methods for
the purposes of automatic texture synthesis parameter selection. The direct
methods are advantageous as they, by definition, provide a more direct route to
automatically estimating parameters without the need for relying on a similarity
measure, which potentially introduces further bias.

The heuristics developed as part of our indirect approach, combined with an
objective similarity measure is capable of successfully synthesizing a better result
than those using a standard set of parameters. The approach is not strictly
limited to texture optimization (as presented in this paper), but could be applied
to any exemplar-based texture synthesis algorithm.

Neither of the methods are currently without flaws. We identify the most notable
limitations and note upon potential solutions. We believe that methods shows

9.9 Future Work 139

promise as a viable method for fully automating texture synthesis, and warrant
further research.

9.9 Future Work

All of the limitations detailed in section 9.7 are ideal for future improvement,
especially further work on a more accurate similarity measure as it has a signif-
icant impact on the viability of the indirect parameter selection method.

Increasing the speed of texture synthesis and the associated parameter selec-
tion is also an attractive area for future work. A significant speed up would
be achieved by implementing Barnes et al.’s patchmatch algorithm [11], with
a minor quality loss. Another path of optimization would be to parallelize the
complete algorithm and implement it on a GPU. Similar to the work done by
Lefebvre and Hoppe [77], who extended Wei and Levoy’s 2D synthesis approach
[126]. The most computational heavy components of texture optimization are
ideally suited to be parallelized and implemented on a GPU. Traversing a high
dimensional search space has already been shown to perform much faster on
a GPU by Garcia et al. [38], and since texture optimization updates each
pixel from a static set of candidate neighborhoods, it could easily be computed
using a GPU. As already stated by Manke and Wünsche [83], implementing
histogram matching is currently the biggest issue plaguing a direct implementa-
tion of texture optimization on the GPU. Kopf et al. have already stated that
the histogram must be up to date during the synthesis process. Only updating
the histogram in between iterations causes the method to over/undershoot the
intended goal.

A possible solution might be to randomly group pixel updates and update the
histogram periodically during texture synthesis, instead of after every pixel has
been updated.

Acknowledgments

We’d like to thank Johannes Kopf for the past correspondence regarding the
texture optimization algorithm. We would also like to extend our thanks to
Takeo Igarashi and the University of Tokyo for their collaboration during the
creation of this paper. This research was supported in part by the Danish Meat
Research Institute.

140
Automatic Quality Measurement and Parameter Selection for

Example-based Texture Synthesis

Chapter 10

Registration-based
Interpolation Real-Time

Volume visualization

Lasse Farnung Laursen, Hildur Ólafsdóttir, Jakob Andreas Bærentzen
Michael Sass Hansen, Bjarne Kjær Ersbøll

Abstract

Rendering tomographic data sets is a computationally expensive task, and
often accomplished using hardware acceleration. The data sets are usually
anisotropic as a result of the process used to acquire them. A vital part of
rendering them is the conversion of the discrete signal back into a contin-
uous one, via interpolation. On graphics hardware, this is often achieved
via simple linear interpolation.

We present a novel approach for real-time anisotropic volume data inter-
polation on a graphics processing unit and draw comparisons to standard-
ized interpolation alternatives. Our approach uses a pre-computed set of
cross-slice correspondences to compensate for missing data. We perform a
qualitative analysis using sparse data sets, investigating both visual qual-
ity, as well divergence from the ground truth, testing the limits of the
interpolation method.

Our method produces high quality interpolation with a moderate perfor-
mance impact compared to alternatives. It is ideal for reconstructing sparse
data sets, as well as minimizing quality loss while scaling large amounts of
data to fit on most mobile graphics cards.

142 Registration-based Interpolation Real-Time Volume visualization

10.1 Introduction

A significant number of scientific fields make use of three dimensional data sets.
Visualizing these data sets is often advantageous to help gain a better overview
of the data itself. Since the advent of non-invasive imaging technology, such as
x-ray computed tomography (CT) [58], the medical field has taken advantage of
visualizing medical volumetric data. Recently, this kind of non-invasive imaging
has also found its way into the food industry, using CT-scanned images of pig
carcasses to accurately assess the lean meat percentage [117].

Powerful graphics processing units (GPUs) have provided the computational
power necessary to render these three dimensional data sets in real-time. To-
days Modern GPUs are programmable and allow for custom code to be executed,
enhancing and improving visualization techniques. However, this customizabil-
ity comes at a cost and is often slower than the operations hardwired into the
rendering pipeline.

A central task in volume visualization is converting the discrete data into a
continuous signal using interpolation. In our case, interpolation methods can
be generally classified as either scene- or object-based [43]. Scene-based inter-
polation usually makes use of uniform registration, interpolating between values
based on their locations within a given image. Commonly used methods in this
category includes linear, cubic and truncated sinc functions. Object-based inter-
polation takes advantage of information contained within the data set, including
structure and interconnectivity, to produce more accurate results. A conceptual
illustration of the difference between scene- and object based interpolation is
shown in Figure 10.1.

Data acquired via x-ray computed tomography is stored in slices, representing
periodic measurements across the subject being scanned. The distance between
measurements within these slices are often smaller than the distance between
the slices themselves. In medical image analysis, this is typically referred to as
in-plane vs through-plane resolution. As a result, the voxels (and by extension
the data set) are anisotropic.

This anisotropy makes feature aware interpolation methods much more attrac-
tive given their likely to reproduce interpolated values that are feature correct.

The built in functionality in modern GPUs only supports linear interpolation
and nearest neighbor interpolation. Like other scene-based interpolation meth-
ods, linear interpolation performs poorly and produces artifacts when applied
to anisotropic data. The object-based method we present easily outperforms
the scene-based methods with a moderate performance impact. Known as reg-

10.2 Related Work 143

Not Feature Aware Feature Aware

Figure 10.1: A simplified illustration of an interpolating kernel (green) acting on
sparse data (grey areas) containing features (red areas). The x marks the current value
being estimated. Conceptually, the feature aware kernel changes shape to accommo-
date feature detection, while the non-feature aware kernel retains it shape regardless
of surrounding features.

istration based interpolation, the method involves a preprocessing step where
the data is analyzed and meta-data is created to aid interpolating the data.

The result is an approach that is ideally suited for modern GPUs, useful for
reconstructing sparse data sets as well as compressing large datasets for the
purposes of rendering them on GPUs with less memory available.

10.2 Related Work

Interpolation has a long history [84], as its applicability is almost limitless.
Grevera et al. give a comprehensive overview of the interpolation methods
commonly used on three dimensional image sets, and present a shape-based form
of interpolation [43]. Penney et al. present a registration-based method which
statistically out preforms both linear and shape-based interpolation [96]. Frakes
et al. [36] improve upon the method presented by Penney, both in computational
runtime and resulting interpolation. Ólafsdóttir et al. further improve upon the
method by registering data in two directions, as well as performing the necessary
calculations in a pre-processing step, as opposed to doing them in real-time [69].

144 Registration-based Interpolation Real-Time Volume visualization

Given the flexible programmability of modern GPUs, most scene-based meth-
ods for interpolation can be implemented to execute on the hardware. However,
the gain in visual quality is rarely worth it, as they incur several costly texture
memory look-ups. Even a software implementation of simple trilinear interpo-
lation on the hardware is computationally expensive, compared to the speed of
its built-in counterpart.

The issue of accurate interpolation also exists in alternate data representations,
such as surface meshes generated from volume data. Moench et al. [87] present
a staircase-aware interpolation method to retain surface features while removing
staircasing artifacts.

To the best of our knowledge, little prior work exists regarding improving
anisotropic volume interpolation, in volume rendering, on GPUs.

10.3 Overview

In Section 10.4, we begin by briefly touching upon the underlying principles
behind registration based interpolation for the purposes of arguing for its easy
implementation on a modern GPU. Readers unfamiliar with the approach will
gain a basic understanding, but we will defer to earlier mentioned papers [36,
43, 69, 96] for a thorough explanation.

Section 10.4.1 details notable implementation details regarding GPU utilization.

The testing protocol along with all the relevant results are detailed in Section
10.5, followed by the conclusion in Section 10.6 which wraps up the work and
notes on potential future research.

10.4 Registration Based Interpolation

A trilinear interpolation of the intensity in point px,y,z, located between two 2D
slices IA and IB , may be formulated in the following manner

Ilin(px,y,z) = (1− α)IA(px,y) + αIB(px,y), (10.1)

where IA and IB are the bilinearly interpolated intensity values at the closest

10.4 Registration Based Interpolation 145

points of the neighboring slices. As will be demonstrated in the paper, this
may be suboptimal due to the lack of point-correspondence between these two
points. Note, that if the x and y components of px,y are not coincident with the
voxels in the slices IA and IB , bilinear interpolation is applied. α is determined
by inter-slice distances (pz)

α =
pz − IBz

IAz − IBz

. (10.2)

As seen above, trilinear interpolation can be expressed as bilinear interpolation
within each slice followed by linear interpolation between slices. A central point
of this paper is that we can obtain a much better reconstruction by replacing
this linear interpolation between closest points with an interpolation that takes
slice correspondences into account. Proper correspondences may be achieved
automatically using image registration. Hence, the basis for the registration-
based interpolation approach is the set of 2D image registrations between each
pair of slices, both ways. This results in a deformation (correspondence) field
represented as a set of two dimensional vectors in each point. For the experi-
ments in this paper we have used registration based on B-splines [103] with sum
of squared differences as a similarity measure. Note however, that given that the
resulting deformation fields are sufficiently smooth, the proposed interpolation
scheme is independent of the choice of registration algorithm.

y

z

y

z

y

z

y

z

1. Dataslices 2. Point to Interpolate 3. Correspondances 4. Interpolated Result

Figure 10.2: A simplified illustration of the registration interpolation method. 1. A
cross section of rendered volume data. The dotted lines represent the actual location
of two data slices. The data is initially shown using the nearest value filter (no inter-
polation). 2. The point we wish to interpolate is shown. 3. The deformation fields
reveal the correspondence vectors for the immediately adjacent voxels. 4. Since our
point to interpolate is exactly half way between our data slices, we only use one half
of each correspondence vector to find the appropriate voxels to finally interpolate in
between linearly.

Figure 10.2 shows the interpolation process broken down into four steps. The

146 Registration-based Interpolation Real-Time Volume visualization

data point we wish to acquire has been placed directly in between two known
slices of data, for the purposes of this example.

More generally, given a point px,y,z, the registration based interpolated data is
calculated by

Ireg(px,y,z) = (1− α)IA(px,y + αϕBA(px,y))

+αIB(px,y + (1− α)ϕAB(px,y)).
(10.3)

where IA and IB are the slices closest to the point we’re interpolating [69]. The
deformation fields from IA to IB and IB to IA are represented by ϕAB and
ϕBA, respectively. Note that as opposed to Eqn. 10.1, not only intensity but
the neighbor point position, given by the amount of deformation, is determined
by α.

Figure 10.3 illustrates the aforementioned variables, apart from the deformation
fields ϕAB and ϕBA, whose contribution is visualized by the green arrows.

10.4.1 GPU Implementation Notes

Choosing the right data type for representing the volume data is important, in
order to make the most of the memory afforded on the GPU. The data was gen-
erously provided by the Danish Meat Research Institute (DMRI)[28] in the form
of 16-bit integer values in the industry standard dicom [91] file type. Adhering
the latest OpenGL standard [107], the ideal storage format is the recently intro-
duced 16-bit floating point values format, which supports non-clamped values
and does not require rescaling of the original density measurements. The origi-
nal density values from the pig carcass span from -3024 to 2447, hence there is
minimal loss of precision by using the half-precision floating-point format.

In addition to the volume data, the associated deformation fields, described in
Section 10.4 must also be stored locally on the GPU for optimal performance. It
turns out that they are an ideal fit for an already standardized texture format.
Since every interpolated value needs two displacement vectors (as visualized in
Figure 10.2 and 10.3), a texture containing the entire color spectrum as well as
the alpha channel (RGBA) is ideal for its representation. By storing the x and
y components of the two vectors in the R, G, B, and A components respectively,
only a a single texture look-up to retrieve both displacement vectors, as well
as two successive look-up to determine the actual density values to interpolate
in-between.

The deformation fields are traditionally represented via 32-bit floating point

10.4 Registration Based Interpolation 147

y

z

p

I BI A

Figure 10.3: A magnified annotated version of fig. 10.2, sub-image 4.

values. This ensures a precise representation at the cost of high memory usage.
Most medical datasets maintain a certain level of spatial locality, it is therefore
natural to assume that the displacement vectors have a limited range within
which they point. We will therefore analyze the impact of having the vectors
scaled to be represented via less precise 8-bit signed integer values.

148 Registration-based Interpolation Real-Time Volume visualization

10.5 Testing

In this section we begin by outlining our testing setup and concrete testing pro-
tocol. The obtained results are presented along an evaluation of the qualitative
impact.

10.5.1 Setup and protocol

Our testing was conducted primarily on an Alienware m17x laptop, utilizing
two SLi connected GeForce GTX 280M graphics cards, each having 1 gigabyte
of memory available. We used two three dimensional image sets of two different
pig carcasses, provided by the Danish Meat Research Institute (DMRI)[28] as
data, for our testing purposes. The first dataset was specifically scanned to be
isotropic and serves as ground truth for our quantitative testing, with a size of
212x512x1662 in the x, y, and z dimensions respectively. The other dataset is
representative of a typical sparse scan performed in an actual slaughter house,
with a size of 256x480x134. The displacement fields are calculated in Matlab

using code kindly provided by Ólafsdóttir et al. The real-time rendering is
preformed using OpenGL in conjunction with C++.

Our comparative evaluations are limited to the registration based interpolation
method and the standardized trilinear interpolation. It is tempting to consider
including a wider array of standardized interpolation methods, such as tricubic
interpolation. While this type of interpolation is likely to provide more pleas-
ing visuals when compared to trilinear interpolation, it is still a scene-based
interpolation method and as such will render results without the accuracy that
structural information can provide. In addition, tricubic interpolation and other
methods utilizing a wider array of samples are technically unfeasible since they
require many computationally heavy texture look up calls. Section 10.5.5 de-
scribes the performance impact, proving this, and similar methods, to currently
be unusable in a real-time context.

We use the isotropically scanned dataset as ground truth and create 15 alternate
sparse datasets based on it. Each new dataset has an increasing number of slices
removed following the pattern visualized in figure 10.4.

Removing slices in this pattern ensures that there are as few periodically reoc-
curring slices as possible, while still maintaining the same number of missing
slices between retained slices. This minimizes potential bias by maximizing
the variation of data contained in the slices that are to be interpolated. An
exception being the very first slice which is always retained. Figure 10.5 is a

10.5 Testing 149

s = 0

s = 1

s = 2

s = 3

s = 4

s = 5

s = 6

s = n

n

Figure 10.4: Visualized slice reduction. The black portions represents retained data.
As n (sparsity level) increases, the data becomes more sparse.

comparative chart of the size difference between the original dataset and the
more sparse data sets, along with displacement data. Note that we mainly dis-
regard the least sparse data set (sparsity level 2) during testing, as it essentially
just replaces the removed slices with even more voluminous displacement data,
nullifying any benefit gained by using registration based interpolation.

Since volumetric data sets derived from pig carcasses contain a large amount of
air, we apply a mask to filter out voxels which are uninteresting during quan-
titative testing. We threshold the entire volume and retain voxels which are
sufficiently dense to be identified as pig matter. However, to avoid risking miss-
ing transitional voxels from air to matter, we perform a simple mathematical
morphological dilation operation to include all voxels adjacent to an already
included voxel.

Because we have the original isotropically sampled volume, it is possible to
compute the difference between an interpolated value and the original true voxel
value (from a removed slice) at the precise location of the given voxel. This
allows us to gage the quality of our interpolation method as well as compare it
to other interpolation methods.

We are also interested in knowing how well the registration method [69] used to
compute the deformation field, performs. In other words, validating the method
by performing a comparison in between deformation fields from differently sparse
data sets. Ideally, we would obtain the same result if we first track a feature
from slice 1 to slice N, one slice at a time, and then compare the sum of these

150 Registration-based Interpolation Real-Time Volume visualization

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Si
ze

 (
in

 m
e

ga
b

yt
e

s)

Sparsity Level

Original Data

Data + Displ. Vecs

Figure 10.5: Comparative chart of the sizes of the originally isotropic pig carcass
data set and the sparse versions, along with potential deformation field data.

deformation vectors to the one produced by the direct registration of slice 1 to
slice N. This hypothesis is easy to verify by comparing accumulated deformation
fields from a less sparse data set, to the deformation field of a more sparse data
set. The concept of tracking just a single feature is visualized in Figure 10.6.

Having determined the deviation of each interpolation method from the estab-
lished ground truth, we subjectively evaluate the visual quality of the method
applied to our pig carcass data sets.

10.5.2 Quantitative Evaluation

We begin our analysis by comparing both the hardware supported trilinear
interpolation method, and the registration based method, to the ground truth
provided by our isotropic data set. Figure 10.8 shows the effects of interpolation
values from an increasingly sparse data set.

As the results in Figure 10.8 depict, the registration based method is closest to
the ground truth on every tested level of sparsity.

The results of the 8-bit integer registration based method shows that a reduction
in precision of a factor of four, has little quantitative impact on the performance
of the registration based interpolation.

10.5 Testing 151

y

z

Figure 10.6: An illustration of an ideal scenario of displacement vectors from two
differently sparse sets. The light gray arrows are derived from a less sparse set, and
in this case add up to the displacement vector calculated from the more sparse data
set. In this ideal scenario, the summation of less sparse displacement vectors always
conform to the displacement vector from the very sparse data set. In a less ideal
scenario the gray arrows would not sum to the same location as the black arrow.

10.5.3 Multiple Deformation Slice Correspondence Com-
parison

To further validate the registration based interpolation method, we compared
deformation vectors from our datasets with a sparsity level of 3 and 15. Using the
approach described in Section 10.5.1. Each deformation vector from the sparse
data set is compared with the sum from the corresponding displacement vectors,
visualized in Figure 10.6, in the less sparse data set. Subtracting the vectors from
each other yields the difference in offset, and the length of this vector reveals
how accurate the registration based interpolation is at determining identical
correspondence between these two differently sparse data sets. The severity of
the offset is determined by the real-world sample distance in between voxels,
which in our case is approximately 1 mm in the original isotropic dataset.

In one direction, the mean difference in length was just a little over a single voxel
with a value of 1.11015, where as the other direction had a mean length differ-
ence of 3.l4534. This means that there is an approximate average deviation of
1 millimeters and 3 millimeters respectively.

152 Registration-based Interpolation Real-Time Volume visualization

All

8th

Pig Hindquarters BonePig Hindquarters Meat Pig Ribs Bone

8th
Reg

16th

16th
Reg

Figure 10.7: Five sets of real-time volume rendered images of the originally isotropic
pig dataset, rendered from three different perspectives. The first set is the densest
volume data set, followed by a sparse set containing every 8th slice of the original
using trilinear interpolation, followed by the same data set using registration based
interpolation. The final two sets contain every 16th slice of the original data set using
trilinear and registration based interpolation.

10.5 Testing 153

10

15

20

25

30

35

40

45

50

55

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
e

a
n

 S
q

u
a

re
 E

rr
o

r

Sparsity Level

Reg, Based Float

Reg, Based Char

Trilinear

Figure 10.8: The Measured Mean Squared Error measured by by comparing the
interpolated density values to the ground truth.

10.5.4 Qualitative Evaluation

The 32-bit registration based interpolated visualization is almost visually indis-
tinguishable from its 8-bit counter part and has therefore been omitted from
the Figures presented in this Section.

Figure 10.7 shows a comparative visualization of the originally isotropic data set
along with 2 sparser versions, each containing three different perspectives. The
registration based interpolation method visually surpasses the trilinear interpo-
lation method by far. In most cases, the displacement field succeed at masking
staircasing artifacts caused by sparse data.

One of the most visually striking differences between all the 15 sparse datasets,
and the complete one, is that a lot of fidelity is lost due to poor surface normals
(calculated using the central differences method). Even when every 2nd slice
is retained. The images make it clear that features spanning across several
slices are much better recognized by the registration compared to features that
are almost parallel to the slice plane. The ribs shown in the right column of
Figure 10.7 are especially susceptible to incorrect interpolation once the data
set becomes sparse enough. Ribs start melding together at a sparsity level of 7
(every 7th slice retained).

154 Registration-based Interpolation Real-Time Volume visualization

10.5.5 Performance Benchmark

We perform a simple performance benchmark by measuring the average ren-
dered frames per second over a 60 second time span. To ensure a representative
measure, the volume is constantly rotating to avoid any bias introduced by only
rendering a slender side of the pig carcass data set. In addition, each interpola-
tion type is performed using unique shader code, due to the high performance
impact of introducing just a single branching statement in an often used func-
tion, such as intensity look-up.

Using hardware supported trilinear interpolation each color value calculated
along a traced ray is comprised of 7 texture look ups. One for the local inten-
sity, and an additional six for to calculate the normal via the central differences
method. When using registration based interpolation, the amount of texture
look ups is tripled. For each built-in trilinear interpolation look-up, the reg-
istration based method performs one to receive the deformation field, and two
additional look ups to obtain the to-be-interpolated intensity values. In the case
of tricubic interpolation the number of texture look ups, when compared to hard-
ware support trilinear interpolation, is increased by 64 times. This total of 448
texture look ups drops the average frames rendered per second drops far below
1. Our empirical testing lead to a single frame being rendered after approxi-
mately 9 seconds. Consequently, the tricubic interpolation and similar sample
heavy interpolation approaches are computationally unviable in real-time.

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

A
v

e
ra

g
e

 F
ra

m
e

s
P

e
r

S
e

co
n

d

Sparsity Level

Trilinear

Registration Based

Figure 10.9: Average frames per second, measured over a 60 second time period, for
both hardware supported trilinear interpolation, and registration based interpolation.

As the graph shows in Figure 10.9, the built-in trilinear interpolation is a clear
winner in any isolated case. This is not especially surprising given the 1-to-3
ratio of difference in texture look ups, along with some additional operations.

10.6 Conclusion 155

More interesting is the point at which the registration based method outper-
forms the dense data set, which happens when approximately every 8th slice is
retained.

10.6 Conclusion

The registration based method presented in this paper has been proven to be
a viable real-time rendering interpolation alternative compared to the built-in
trilinear interpolation. While it cannot compete with the speed of the built-in
trilinear interpolation, it offers real-time performance as well as a significant
reduction in memory use, while maintaining a higher quality visualization. The
registration based method is, per definition, likely to outperform any method
which is not feature aware.

We have determined that there is a significant correspondence between features
when in our case when comparing two sparse datasets derived from the same
isotropic dataset.

Using this approach allows for larger volumetric data sets to be visualized on
GPUs with less memory available.

10.6.1 Future Work

It would seem likely that certain data slices are more essential than others
to maintaining acceptable results using registration based interpolation. The
difference in deformation accuracy based on direction noted in Section 10.5.3
corroborates this hypothesis. Given an isotropic data set acting as ground truth,
it would be interesting to develop an optimizer which removed and re-added
slices in order to determine the optimal set of retained slices while minimizing
memory usage. Essentially creating an optimized volume compression format.

We’ve determined that our dataset yields deformation fields that correspond
to the same features with minor deviation. It would be interesting to apply
the multiple deformation slice correspondence comparison to other datasets and
determine which features yield worse or better correspondence fields.

Although sample heavy interpolation schemes are computationally too demand-
ing to execute in real-time on modern GPUs, it would be interesting to evaluate
the performance/quality trade-off involved in improving the in-slice interpola-

156 Registration-based Interpolation Real-Time Volume visualization

tion method. The registration based method relies on standard bilinear interpo-
lation, assuming a sufficiently dense data set, but perhaps bicubic interpolation
would yield visually improved results with an acceptable performance hit.

Acknowledgments

We extend our thanks to the Danish Meat Research Institute (DMRI) [28] for
their support as well as for providing us with the data sets of the scanned pig
carcasses.

Chapter 11

Pig Product Prototyper:
Cutting interface design

Lasse Farnung Laursen, Jakob Andreas Bærentzen, Takeo Igarashi
Michael Kai Petersen, Line Katrine Harder Clemmensen

Bjarne Kjær Ersbøll

Abstract

With the help of industry experts we developed Pig Product Prototyper, an
application intended to aid in the communication process between producer
and retailer when developing new meat products for a constantly evolving
market. The application interface allows the user to make planar cuts to a
virtual pig formed from CT-scans of a real-world pig carcass. We perform a
comparative study of two different controller interfaces for the application,
one being a traditional mouse and keyboard input, and the other a six
degrees of freedom haptic feedback device. The goal was to assess usability
issues and overall usability for the target group concerning both interfaces.

The accurate depiction of pig anatomy can guide trained professionals to
re-create standardized pig products. The results of the usability test with
sales personnel do not lean significantly in favor of either interface, despite
the participants expressing favor towards one interface. This stalemate
carries a significance in regards to the more alien interface introduced to the
users. We report on the development process and observed user experience
regarding the two interfaces.

158 Pig Product Prototyper: Cutting interface design

11.1 Introduction

Approximately 90% of the danish meat industrys profit is derived from export-
ing products. Meat industries from competing nations, such as Germany and
Spain, are catching up to Denmark in terms of product quality and price. Thus,
the danish meat industry is under continuous pressure to find innovative ways
to improve service and production, thereby minimizing costs and maximizing
efficiency. One such area of improvement is the existing product development
cycle between customer and meat producer.

A number of meat products are created using internationally recognized stan-
dards that many meat producing companies apply. However, in a number of
situations these standardized products do not meet the needs of the buyer and
must be further refined, or even created from scratch. In this case, the meat
producer and meat retailer communicate in person and via long distance in or-
der to settle on terms agreeable for both parties involved. Visual aids (static
images) are occasionally used, and at some point during the entire process tech-
nical staff, trained in the slaughtering of carcasses, provide expert knowledge. It
can take several meetings before both parties agree to the final product, and in
the course of these meetings, real prototypes are produced from carcasses that
can no longer be reused. The process, as a whole, is iterative, unstandardized,
and destructive. Due to the lack of established standards, there is no fixed time
frame for this development cycle, but on average it takes anywhere from a few
weeks to a month until the final specifications are in place.

We communicated with experts within the danish meat industry to assess their
needs regarding virtual product development, and designed the Pig Product
Prototyper (PPP) as the first prototype milestone. We present the design pro-
cess, and evaluation of the Pig Product Prototyper developed in collaboration
with the Danish Meat Research Institute (DMRI) [28] and Danish Crown. Us-
ing the application in the communication process allows for a less wasteful and
more efficient product design cycle, as well as supporting long distance commu-
nication without the introduction of additional ambiguity. The prototype was
tested with the intended target group, consisting of the sales staff at Danish
Crown.

The PPP renders a virtual pig carcass, based on CT-scanned data from a real
pig, and allows the user to create, modify and delete planar cuts. A screenshot
from the application is shown in Fig. 11.1, showing the CT-scanned pig data cut
using a single plane. Planes are created, moved and rotated in real time to fit the
users needs. We designed two separate interfaces: one using a traditional mouse
input with the keyboard, while the other uses a six degrees of freedom haptic
feedback device (Phantom Omni haptic feedback device c© Copyright Sensable

11.2 Related Work 159

Figure 11.1: Pig Product Prototyper. Showing a direct volume rendered pig carcass
with a single cut plane, partially selected via the cursor.

Technologies, Inc. [94]). In the case of both interfaces we prioritized simplicity
over functionality in an effort to allow for a quick and simple introduction during
testing.

Since none of the interactions provided by the PPP specifically call for haptic
interaction, one might ask whether a unfamiliar device such as the Phantom
Omni is justified. However, we hypothesize that the ease with which spatial
positions and orientations can be input via the Phantom should level out the
learning curve for novice users. Thus, the Phantom might indeed be preferred
by (some) users and this is a part of what we try to investigate in the presented
paper.

11.2 Related Work

This work contributes primarily to the areas of volumetric modelling interfaces
and usability testing. We survey related research on these topics and note similar
projects.

A significant portion of the decisions and actions taking during the evaluation

160 Pig Product Prototyper: Cutting interface design

of our interface, is derived from previous research [101, 115]. There has been a
number of previous works regarding the evaluation of multi-dimensional input
devices, specifically the Phantom Omni.

The steps taken during an evaluation of a given interface is highly dependent on
the type of interface and the intended goals. It is unlikely that another project
matches the exact pre-requisites and goals of this (or any other) project. Harders
et al. [49] perform a study in between multiple 6DOF haptic interfaces, which
includes the Phantom Omni, and determines none of them to be significantly
superior to any of the others. Plimmer [99] compares a number of input devices,
including both the mouse and Phantom Omni, when used in pen-dominant
software tools. She comments on existing usability issues with pen-based forms
of interactions, but also notes that users tolerate the inefficiency of the pen in
exchange for convenience. Yhu and Lee [134] present the technical aspects of a
virtual prototyping haptic interface using a 5DOF haptic input device.

A large body of research exists regarding volumetric modelling. Galyean and
Hughes [37] present a volumetric sculpting interface using a variety of tools,
allowing the user to create a rough replica of an object. A more precise volu-
metric sculpting tool is presented by Wang and Kaufman [121]. The FreeForm R©
systems [106], created by Sensable R©, is noted by Gregory et al. as probably
being the first 3D digital modeling tool to allow users to express themselves
creatively using 3D-TouchTM. Gregory et al. present their own Haptic-enabled
3D interface, using a Phantom Omni, called inTouch [42].

To our knowledge, we were unable to locate a previous comparison between both
the mouse and a 6DOF input device.

11.3 Design Process

The idea of a meat product prototyping tool originated from the danish pig
meat industry to serve as an additional competitive advantage. To establish
the needs of the PPP application, we interviewed employees associated with the
development of new products to gain insight into the unstandardized process.
We identified the main areas of requirements as follows:

• Product Reality - A key factor for the success of the PPP is the realism
with which it can depict the anatomy of the pig. The anatomy itself can
almost be described as a cutting blueprint, which experts use as a guide
to properly produce standardized products, despite biological variations
in between pigs. A dynamic 3D pig carcass is only useful, if the same

11.3 Design Process 161

anatomical aspects of the pig can be recognized by experts, as on a static
photo.

• Factory Reminiscent Cuts - The procedure of slaughtering a pig and
producing consumer products involves a number of steps. In general, the
first half of the procedure is primarily automated using machines, apart
from the actual killing, which has to be done by a certified butcher. The
second half is usually less automated and more done by hand, depending
on how close to a consumer product, the final result is. The cuts committed
by the PPP should correspond to real world applicable cuts, committed
during the process of actual product development.

• Ease of use - Although this is practically a preferred requirement for any
application, the relative ease of use is quite dependent on the intended
target group, and their technical prowess. The target group in this case
consists primarily of the sales staff which has received no formal training
related specifically to the prototyping of meat products, and span a wide
age gap from the twenties to late fifties (24-58).

The advancement of CT-scanning integration into modern abattoirs, made it
ideal to leverage volume data for the purposes of realistic product reproduction.
Even a fairly low resolution scan of a pig carcass still encompasses all the sig-
nificant anatomy. Using direct volume visualization as our approach to realistic
product visualization, we designed a few prototypes of various interaction tech-
niques. Since a number of the most common products are created using planar
cuts, we decided to limit the design to only allow the user these simple planar
cuts. Early versions allowed the user to mimic the movement of cutting through
meat by drawing a line along the pig carcass surface and estimating the best
fitting plane. We also prototyped versions allowing the user to feel the resis-
tance of the different types of pig tissue contained in the carcass: fat, muscle,
and bone. Our empirical testing lead us to believe that this complexity only
served to complicate what should ideally be as simple an interface as possible:
One allowing the user to quickly and easily create product prototypes.

Having the prototype interface completed, we are interested in evaluating how
well the prototype performs in terms of both usability, as well as the aforemen-
tioned requirements. As previously mentioned, the main target group for this
application is the sales personnel involved in communicating with clients re-
garding the development of product prototypes. However, this group of people
do not possess the expertise with which to evaluate and create virtual products
matching the real counterparts. This knowledge must be provided by an edu-
cated butcher. The sales personnel are, however, the ideal test participants for
usability testing, as they are the end users of the PPP. Tasking these participants

162 Pig Product Prototyper: Cutting interface design

with the recreation of well known products simulates a realistic application use
which allows us to gage usability issues and measure performance.

Before submitting the prototype design to a usability study, we subjected it
to a pilot test to determine the most glaring issues with the first iteration. A
number of significant issues were observed, both with the design as well as the
testing procedure to warrant a second pilot test. The second pilot test revealed
minor issues which were addressed, at which point the prototype was ready for
the actual formative usability study.

11.4 Implementation details

As previously stated, the use of volumetric data is essential in the virtual recre-
ation of the pigs anatomy. The PPP is essentially a much more versatile sub-
stitution for the static pictures occasionally used during a product negotiation.
To maintain high responsiveness from the interface, the visualization of the vol-
ume data relies heavily on a set of modern GPUs (two GeForce 280m in SLi).
This computational power generally provides an interactive frame rate at ap-
proximately 25 frames per second (FPS). However, if the pig carcass fills up the
entire view window, the application is still subject to unwanted slowdowns.

We implemented two features to keep the frame rate and by extension the re-
sponsiveness of the application as high as possible:

• Low-High Quality Mode Rendering - When either the pig carcass or
any of the planar cuts is moved, the rendering engine switches to a lower
quality rendering mode in order to maintain a high frame-rate. Once the
user ceases to interact with either the pig carcass or any of the planar cuts,
a high quality version of the current perspective is rendered. The quality
difference is visualized in Fig. 11.2.

• Buffered Volume Rerendering - Every frame, the volumetric rendered
pig carcass is rendered into a buffer. This ensures that the entire scene
only needs to be redrawn if the pig or any associated cut planes are altered.

As long as neither the pig carcass nor the cutting planes are moved or
rotated, the user interface is combined with the pre-rendered image of the
pig using the depth buffer from the volume rendering.

It should be noted that the interpolation algorithm used in conjunction with
direct volume rendering gives an appearance of skin on any uncut surface. How-

11.5 Interfaces 163

High QualityLow Quality

Figure 11.2: Two screenshots taken from the same camera angle in high- and low-
quality mode respectively.

ever, the shape of the surface and it’s notable features still correspond to that
of a real pig carcass.

Despite the fact that modern GPUs are highly programmable compared to their
older counterparts, there are still a number of restrictions in place when execut-
ing a large portion of the render code directly on the GPU. One such restriction
is the limitation on the complexity of the variable containers used on the GPU
cores. Designing the application to utilize planes as its primary cutting ge-
ometry allowed us to leverage the GPUs design to our advantage. In its most
compact form, a plane can be represented by a normal vector and a scalar value.
This compact ”four value” representation allowed us to use simple predefined
structures in place on the GPU cores.

We also implemented a simple binary mask to allow the user to create completely
custom cuts into the pig volume, but this functionality was determined to be too
complex for the simple interface we wanted to compare in our usability study.

11.5 Interfaces

Visually, the two interfaces are almost identical. The user is presented with
a direct rendered volume consisting of CT-scanned data from a real-world pig
carcass. The user has the ability to create, modify, and delete cut planes.
Each cut plane consists of a frame and corners surrounding the pig volume, as
illustrated in Fig. 11.1.

Apart from the visual representation of the pig carcass depicted in Fig. 11.1,
the user also has the option to render an x-ray-like perspective of the volume
data as visualized in Fig. 11.3. For both interfaces, the user has to press the
space bar on the keyboard in order to switch between them.

164 Pig Product Prototyper: Cutting interface design

Figure 11.3: Pig Product Prototyper visualizing the volume using an x-ray-like
renderer.

11.5.1 Mouse Interface

The mouse interface allows the user to manipulate the position and orientation of
the pig carcass exclusively using the mouse. Any movement or rotation requires
the simultaneous pressing of a mouse button and moving of the mouse. The left
mouse button allows the user to rotate the pig carcass in fashion similar to the
virtual sphere interface described by Chen et al. [22]. The right mouse button
allows the position of the pig to be translated along the current vertical and
horizontal viewing axis. The middle mouse button allows the user to move the
pig carcass closer or further away.

To create a cutting plane, the user has to place the cursor on the intended
part to by cut and press the enter key on the keyboard. This creates a cut
plane with the same orientation as the small blue plane visualized as part of
the cursor. The orientation and position of the plane can then be changed via
controls similar to moving the pig. The user is free to select either a corner or an
edge of a cutting plane using the cursor. By then clicking the left mouse button
coupled with mouse movement the user can rotate the plane. The right mouse
button will instead allow the user to move the plane along the orientation of the
pig carcass. Visualizations of the various interactions are shown in Fig. 11.4.

11.5 Interfaces 165

1. 2.

3. 4.

Figure 11.4: Four different screenshots depicting mouse interaction with the PPP
application. 1. A single cut plane applied to the pig carcass. 2. Left mouse button
interaction with an edge of the cut plane allows the user to move the two edge end-
points around the center of the cut, effectively shifting all four visualized corners. 3.
Left mouse button interaction with a corner allows the plane to be rotated along the
axis running between the two neighboring points. 4. Right mouse button interaction
with any part of the plane allows it to be translated along the pigs current orientation.

Due to the limited number of degrees of freedom presented by the mouse, the
freedom of rotation and translation of the cutting planes was designed to be
restricted around the pig volume. Since the cutting planes remaining centered
around the pig, the rotation and translation of the cutting planes is slightly
different than the rotation and translation of the pig carcass. The cutting planes
move and rotate in relation to the current perspective the user have of the cutting
plane.

Deleting a cutting plane is accomplished by translating the plane far enough
along its normal so that it’s no longer intersecting any of the visible pig volume.

11.5.2 Phantom Omni

The Phantom Omni based interface provides the user with direct interaction of
the pig carcass and associated cutting planes. The device has two buttons on

166 Pig Product Prototyper: Cutting interface design

the front end of the pen, as shown in Fig. 11.5. The button closest to the tip
will be referred to as the forward button, and the other as the back button.

Figure 11.5: Photo of the Phantom Omni haptic feedback device from Sensable,
used with permission by Sensable Technologies Inc.

The front and back button manipulate cutting planes and the pig respectively.
By holding down the back button, the orientation and position of the pig will
change according to how the Phantom Omni pen is rotated and moved, as long
as the button is held.

The forward button is used to introduce and manipulate existing cutting planes.
If the cursor is not near a plane when pressed, a new cutting plane is introduced
with the same orientation as the small blue plane on the cursor. If the cursor
is near an existing plane and the button is pressed, its rotation and translation
will mimic that of the Phantom Omni, as long as the button is held.

This one to one relation of movement and orientation between the Phantom
Omni and the controlled elements (e.g. pig carcass, planes) follows the principle
of least astonishment [104]. The users would expect the elements to move and
rotate in the same fashion as they move and rotate the pen on the Phantom
Omni.

Deleting a plane with the Phantom Omni is done in a similar fashion to the
mouse, by dragging the plane along its normal until the cutting plane no longer
intersects with the visualized pig volume.

11.6 Evaluation 167

The Phantom Omni also provides haptic feedback when the cursor collides with
the pig carcass, effectively allowing the user to rest the cursor on the surface of
the pig. The cutting planes have a light magnetic effect to them, attracting the
cursor if it is close by.

11.6 Evaluation

11.6.1 Expert Product Creation

We gathered expert knowledge from a trained butcher for the purposes of recre-
ating and collecting cutting data of five standardized products. Since the pri-
mary goals were to collect expert knowledge and assess product reproduction,
an expert user cooperated with the trained professional butcher in recreating
the standardized products. The expert user interacted with the PPP interface
guided by the professional who provided instructions as to where to apply the
cuts to the pig carcass. Photographs of the five products along side the virtual
reproductions can be seen in Fig. 11.6.

Ham
1201

Frontend
1301

Middle
1501

Pork Loin
(with Spine)

1602

Pork Belly
1801

Figure 11.6: The five products shown alongside their virtual counter parts. The
virtual products shown in the bottom are created using the expert cuts. The most
striking visual differences are caused by a lack of physical simulation, most notable in
product 1801, where the cut flesh does not even out at the end like in the real world.
The other notable difference is skin appearance caused by interpolation most notable
in product 1602 and 1801.

168 Pig Product Prototyper: Cutting interface design

The volumetric representation of the pig carcass easily allowed for the trained
professional to recognize both bones and muscle groups, and made significant
use of both the standard and x-ray-like rendering of the pig carcass. The low
quality rendering mode did not inhibit the butcher from recognizing significant
anatomy used as a guide to apply the cuts, which allowed the cuts to be placed
quickly and precisely aided by the expert user. The previously mentioned visual
artifact of malplaced skin color also did not negatively affect performance.

It is possible to provide a rough general measurement of the accuracy of the
applied expert cuts, by examining the first three products visualized in 11.6.
These three products together make up the entirety of the pig carcass from
which they are each individually cut. Out of the 4261045 voxels comprising the
pig carcass, the first three expertly cut products together make up 4262697,
yielding a difference of 1652 voxels, less than 0,1 %. It is, of course, possible
that the first product includes the whole pig, and the other two cut it away
completely, yielding the best accuraccy, but as Fig. 11.6 shows, this is not the
case.

11.6.2 Formative Usability Study

In collaboration with DMRI [28] and Danish Crown a formative usability study
was conducted to evaluate potential usability issues as well as ease-of-use of the
mouse and Phantom Omni based interfaces. A total of 8 participants, 7 male
and 1 female, volunteered from the sales staff at Danish Crown to participate in
the test. General information for each participant is listed in table 11.1. Each
of the participants use computers in their day to day tasks and none of them
had had previous interactions with either of the interfaces. Nor had any of the
test participants used a Phantom Omni or similar haptic feedback device prior
to testing. The study took place at the Danish Crown headquarters in Randers
in a meeting room depicted in Fig. 11.7.

As Tullis and William note [115] (p. 54), performing a comparative study of
alternate designs carries a few notable drawbacks with it. There is a high
likelihood of learning effect in between designs, and performing the same task
with multiple designs can quickly become tedious.

We believe the detrimental effects of the comparative study using the same vol-
unteers is minimal in our case. Although the visual appearance of the interface
is nearly identical, the interaction style for each of the interfaces is radically
different given the difference in input controllers. The tasks we required the
participants to perform were all of a simple nature and did not involve ordered
logical solving in order to succeed. Thus, repeating them with a different con-

11.6 Evaluation 169

Participant Age Gender First Use Preference
1 32 Male Mouse P. Omni
2 49 Male Mouse P. Omni
3 53 Male P. Omni Mouse
4 28 Male P. Omni Mouse
5 45 Female Mouse Mouse
6 37 Male Mouse P. Omni
7 24 Male P. Omni P. Omni
8 58 Male P. Omni P. Omni

Table 11.1: The total number of participants in the usability study, along with their
age, gender, which interface they were presented with first, and which they expressed
a preference for.

troller posed a new challenge. Finally, the total number of tasks was small so
as to minimize tedium.

Despite these facts, we still performed counterbalancing and had four partici-
pants begin the test using the mouse interface, and the remaining four begin the
test with the Phantom Omni interface. The tasks themselves were not counter
balanced, as they had a logical order in which they required completing.

For each of the two interfaces, the participant partook in the following phases:

1. Introduction - The user is presented with an instructional video demon-
strating the use of the interface, followed by a short interactive session
where the user can perform all of the possible actions in a practice mode.

2. Navigation Practice - The user is presented with a short series of chal-
lenges, described in the sub-section below, to aid and assess the users
approximate skill level with the interface.

3. Product Creation - The user is instructed to create five standardized pig
products, for the purposes of simulating a realistic use case. This phase
of the usability test is described in a later sub-section.

4. SUS Questionnaire - The user is given the System Usability Scale (SUS)
Questionnaire [16] to fill out.

During the testing sessions, the participants are free to ask questions as well as
encouraged to voice any thoughts regarding either interface, both positive and
negative. Following the completion of all the tasks with both interfaces, the
participant is asked to choose a preferred interface as well as the reasons for
said choice.

170 Pig Product Prototyper: Cutting interface design

Figure 11.7: The meeting room housing the test set up for our usability test, complete
with complimentary refreshments to motivate participants.

11.6.2.1 Navigation Practice

The user is shown one of five navigational frames which has to be aligned to
fit the corners of the screen, as visualized in Fig. 11.8. The green corners have
to be aligned to the bottom and the blue corners must align to the top. If the
frame is viewed from the incorrect side, the colors are given a red tint to indicate
that the frame is facing the wrong direction. The position and orientation of the
navigational frames presented to the user differ depending on the input device
used. This was done partially to decrease the learnability of this particular
phase, but also because the interaction styles differ fundamentally. The mouse
interface essentially rotates a camera around a given viewpoint (in this case, the
pig carcass), where as the Phantom Omni allows the user easier access to look
at regions of no interest.

A pilot test performed prior to the actual usability study revealed the navigation
test to have become the subject of developer difficulty. In other words, the
corners were much too difficult to align properly, meaning participants would
quickly have the frame oriented correctly, but getting each corner to fit took
almost as much time as orienting the frame initially. The sections within which
the corners had to align were made much bigger as a result.

11.6 Evaluation 171

1. 2.

Figure 11.8: Screenshots of a single navigational frame during navigation practice.
1. An example of what the user initially sees during the navigational challenge. 2.
Aligning the frame to fit the view window with the green corners at the bottom and
blue corners at the top completes a single navigational task.

11.6.2.2 Product Creation

Each volunteer was asked to create five standardized products, pictured in Fig.
11.6, using the interface, as quickly and accurately as possible. Every participant
had prior knowledge of the products and were provided photographs of the
products in question. As none of the participants had any formal training,
it is unrealistic to expect anything near a precise reproduction of the virtual
products created using expert knowledge and visualized in Fig. 11.6. The focus
is placed on potential usability issues, as well as how easy it is for the users to
create the required cuts to recreate an approximate version of the product. The
participant was asked tell when they were satisfied with the result, before the
product was considered complete.

During preliminary testing, we contemplated the possibility of introducing live
feedback in the product creation process, informing the user how accurate their
own cutting planes were in relation to the expert version. However, this would
not only have put too strong of an emphasis on the accuracy of the created
product, but also indirectly pressured the user to define their own personal
goals in regards to the expertly created product.

11.6.3 Results

Sauro and Lewis [105] have shown that the geometric mean is a better esti-
mate of the middle task-time in usability studies, than the arithmetic mean or
median, for a small sample size. With the limited number of available sales
staff as volunteers, we use the geometric mean when reporting all of the central
tendencies of task times. The error bars applied visualized in relation to task

172 Pig Product Prototyper: Cutting interface design

times correspond to a 95% confidence interval as recommended by Streiner [111].
We also apply an ANOVA test to the collected data for a concrete numerical
comparison between the two interfaces.

During the usability study, the PPP crashed on a single occasion while being
used with the Phantom Omni by a test participant. Consequently, a small
amount of data for this participant is unavailable. The confidence intervals
are adjusted accordingly with respect to 7 or 8 samples given the results being
calculated.

11.6.3.1 Applied Performance Metrics

The mean time for each navigational task completed using mouse and Phantom
Omni is visualized in Fig. 11.9.

Visually, it’s hard to discern any tendency in the data visualized in Fig. 11.9.
To get a better sense of any significant tendency, we applied an analysis of
variance [86] (ANOVA) which is described more in depth in the following section.
The ANOVA confirmed our suspicion that there was no significant tendency
for faster completion times with the Phantom Omni. As previously noted,
the navigational challenges differ between interfaces and a direct comparison is
therefore not ideal.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5

S
e

co
n

d
s

Navigational Task

Mouse

Phantom Omni

Figure 11.9: The geometric mean time taken by users to solve the individual nav-
igation tasks using the mouse and the Phantom Omni. The error bars represent the
95% confidence interval using the geometric standard deviation based on a students t
distribution.

The mean time taken to create each product is a more accurate basis for com-

11.6 Evaluation 173

parison of performance between the interfaces, and is visualized in Fig. 11.10.
The ANOVA showed that there is no significant difference in task completion
time between the mouse and the Phantom Omni.

0

50

100

150

200

250

1 2 3 4 5

S
e

c
o

n
d

s

Product Creation Task

Mouse

Phantom Omni

Figure 11.10: The geometric mean time taken by users to create each of the five meat
products. The error bars represent the 95% confidence interval using the geometric
standard deviation based on a students t distribution.

The quantitative comparison between user and expert meat products visualized
in Fig. 11.11 is included for the sake of full disclosure. However, the accuracy
of the products cannot be used as a measure to evaluate the success of either
interface since none of the test participants possessed the technical expertise to
reproduce the products to the specifications near the expert level.

Instead a subjective evaluation of each product was performed by us, comparing
the products directly to the expertly created counterparts. As the results show
in Fig. 11.11, every user created product differs, on average, at least 10%
from the expert version. However, all of the products had cuts reminiscent of
the expert version despite less accurate placement, and were therefore deemed
successful.

11.6.3.2 Interface ANOVA

We perform a 3-way analysis of variance (ANOVA) [86] (mixed effect) with
pairwise interactions, where the interfaces and product creation tests are fixed
effects and users are considered a random effect. As previously mentioned, we
intentionally do not compare the navigational tests as they differ by design, and
serve as part of the learning introduction.

174 Pig Product Prototyper: Cutting interface design

0

10

20

30

40

50

60

70

1 2 3 4 5

P
ro

d
u

ct
 P

e
rc

e
n

ta
g

e
 D

if
fe

re
n

ce

Product

Mouse

Phantom Omni

Figure 11.11: The percentage difference of the product created by the user relative
to the product created using expert knowledge. An example of a product that is 100%
different, could in this case be a product that is twice the size of the expert version.

The results, displayed in table 11.2, show no significant effect from the interface.
Unsurprisingly, the analysis indicates that certain products are significantly eas-
ier/faster to create than others. It is also clear that there is a significant differ-
ence in performance with the interfaces per specific user.

Source Sum Sq. d.f. Mean Sq. F Prob>F
User 5.3925 6 0.89876 1.49 0.3308
Interface 0.0001 1 0.00006 0 0.9928
Test no. 5.5283 4 1.38208 8.56 0.0002
User*Interface 3.7328 6 0.62214 3.48 0.0129
User*Test no. 3.8732 24 0.16138 0.9 0.599
Interface*
Test no.

4.2952 4 0.56971 3.18 0.0312

Error 4.2952 24 0.17897 0 0
Total 25.1009 69

Table 11.2: Results from the analysis of variance with pairwise interaction, where
interfaces and products are fixed, and with users considered a random effect.

We also performed an ANOVA where product creation tests were considered a
random effect rather than fixed, which produced similar results for the interfaces.

11.6 Evaluation 175

11.6.3.3 SUS Questionnaire

The SUS score was calculated according to method presented by Brookes [16].
The score on its own, while still an evaluation of a given system, is without
meaning without a relation to other scores. Bangor et al. [9, 10] have analyzed
a large body of work using the SUS, and established an overall grading scale
for evaluating scores. According to this established scale, both interfaces are
mediocre (or OK).

Interface Mouse Phantom Omni
Mean SUS Score 55,3125 56,875
Lower 95% Confidence 46,846 46,898
Upper 95% Confidence 63,779 66,852

Table 11.3: The mean SUS score for each interface along with upper and lower 95%
confidence.

11.6.3.4 Observations

We noted the following useful observations during the course of the comparative
usability study:

• User fatigue - A single case of user fatigue was noted during testing
with the Phantom Omni interface. While an isolated case, we believe the
significance of this should not be overlooked. For the Phantom Omni to
be optimally incorporated into any daily use, it will require its users to
acclimate themselves to become fairly agile with their wrists. The age of
the user and by extension the expected health of the users various muscle
groups have a more significant impact in regards to the Phantom Omni,
in our opinion. Zhai et al. [133] also reported a case of user fatigue in
their study of muscle groups affecting performance.

• Plane Selection - On a few occasions, test participants experienced dif-
ficulty in selecting a single isolated plane. We considered solutions for
each of the interfaces to overcome this issue. In the case of the mouse
interface, the thickness of the cutting plane frames could be adjusted to
fit the number of nearby planes to allow for easier selection when they
are isolated. In the case of the Phantom Omni interface, a direct line in
between the cursor and the nearest plane might help mitigate issues with
perceived depth.

176 Pig Product Prototyper: Cutting interface design

• Control Confusion - Users would occasionally mistake the function of
one of the buttons with that of another, both in the case of the mouse
as well as the Phantom Omni interface. Additional visual and audial
cues might help users better remember which buttons are assigned which
functions as well as longer, more tutorialized, introductions.

• Navigation Plane - Three users initially tried to use the cursor to grab
the navigational planes during the navigational testing phase. Making
them less similar to that of the cutting planes would likely resolve this
misunderstanding.

• Phantom Omni Continuous Button Holding - During preliminary
testing we experienced occasional problems in holding down the Phan-
tom Omnis buttons continuously. We also noticed similar issues during
both pilot tests as well as during the usability study. We believe this to
primarily be the result of low quality buttons on the Phantom Omni.

• Haptic Feedback - Haptic feedback has previously been shown to im-
prove accuracy, but not task times, in 3D target acquisitional tasks [118].
None of the test participants seem to particularly notice the magnetic
draw to the cut planes, nor was the haptic feedback provided by the pig
used extensively.

• Overall Preference - Five of the eight participants expressed to prefer
the Phantom Omni. Given the nearly identical SUS score, we believe that
a significant part of the users preference is based on anticipated perfor-
mance, given more time with the interface.

• Phantom Omni Preference - Almost all of the users who noted their
preference for the Phantom Omni, noted it as being easier to navigate
three dimensional space with. A single user noted the preference due to
all of the necessary functions being operable from one hand.

• Mouse Preference - Out of the three users preferring the mouse, two
noted that with additional experience they would have preferred the Phan-
tom Omni. A single user noted preference for the mouse based on ease of
learning and compact size for mobility.

11.7 Conclusion

The formative usability study of the PPP interface provided valuable infor-
mation revealing minor usability issues affecting both interfaces. As for the
usability of both interfaces, the applied metrics, SUS scores, and ANOVA do

11.7 Conclusion 177

not lean with any significance in favor of either the mouse or the Phantom
Omni interface. The significance of these results come from the fact that both
interfaces were introduced in a very short time frame, and that none of the test
participants had had any previous experience with an input controller resem-
bling the Phantom Omni. Neither of these factors impacted the performance
with the Phantom Omni in such a fashion as to exhibit worse performance than
the mouse interface.

The ease with which an interface is learned has an impact on how readily a user
accepts its integration into their daily working routine, and despite the daily
use of the mouse, the Phantom Omni was able to deliver similar results. It is of
course important to also emphasize, that none of the test participants had had
extensive practice with an interface similar to the mouse cutting interface in
the PPP. The Phantom Omni also provides four additional degrees of freedom,
making it arguably easier to use in a three dimensional virtual space.

It is our belief that in the case of this and similar applications, the Phantom
Omni is a worthwhile avenue of exploration as substitution for the mouse. How-
ever, a longer introductory period is required to in order to become sufficiently
proficient with it.

11.7.1 Future Work

The SUS scores reveal that there is still significant room for improvement in both
interfaces. The following points are what we believe to be the most interesting
avenues of improvement regarding the PPP application:

• Interactive Tutorials - Tutorials visualizing the connection between spe-
cific input controller use and effect on the virtual scene would likely accel-
erate the learning process. Due to the almost infinite number of tutorial
design possibilities, it would be interesting to measure how effective which
tutorials would be at improving the SUS score without altering the inter-
face.

• Expanded Testing Group - Expert knowledge is not a pre-requisite
for proper use of the PPP application. Therefore, usability issues that are
harder to spot could be uncovered by increasing the number of participants
in subsequent tests. Tullis and Albert [115] also note the necessity to
increase the number of participants in a test as a system or product is
close to being refined and finished.

178 Pig Product Prototyper: Cutting interface design

• Prototyping Improvements - All the feedback gathered during the us-
ability study and subsequent interviews is highly valuable and should drive
future design. During an expert interview, we were told that membranes
separating muscle groups are frequently used to perform more specialized
cuts. Not only do these type of separational cuts ease the handling of the
meat, but they are also unambiguous compared to the early planar cuts
imposed on the pig carcasses. Implementing these types of cuts would
make the PPP more useful during as a product prototyper. It would also
be beneficial to generalize the cuts to any conceivable variation in the pigs
anatomy using a so-called pig atlas [47].

• Expert Knowledge Embedding - The PPP has the potential to not
only supplant static imagery, but also imbue even the most novice user
with expert knowledge, by providing constructive feedback regarding cre-
ated cuts. Such feedback ranges from anything in between physical and
fiscal feasibility of cuts, to resulting byproducts.

11.8 Acknowledgments

We would like to thank the DMRI [28] and Danish Crown for their collaboration
during the development of PPP. We would also like to thank the Tokyo Univer-
sity for acting as partial host during the development period. The collaborative
effort between universities was partially funded by Otto Mønsted Fonden, Au-
gustinus Fonden, and the Japan-Scandinavian Sasakawa Foundation who we
thank. We also thank the volunteers who partook in the usability test, mak-
ing this research possible. Finally, we’d like to thank Kasper Hornbæk for his
feedback during the development of this paper.

Part III

Appendix

List of Figures

1.1 Cost/profit relation of the Danish production of pigs in 2009.
The percentages reveal how large a portion of the profit from
sold products was spent on the tasks required to produce them.
For that particular year, the costs outweighed the profit and the
chart sums to more than 100% as a result. Chart courtesy of
Kjærsgaard [61]. 4

2.1 Visualized volume data representing half a pig carcass scanned by
a CT scanner. Density values are scaled with the least to most
dense being black and white, respectively. The top image shows
an opaque rendering of the data with a cutting plane along the
depth axis. The bottom image is a transparent rendering of the
same data without any cutting plane. The distance in between
measurements along the pig are spaced further apart than the
other two axis, resulting in anisotropy. 14

3.1 A simple 3 × 5 × 3 representation of volume data. Each ball
represents an infinitely small sampled point in space. 18

3.2 One dimensional reconstruction filters. A.) Box, B.) Tent, and
C.) Sinc filter. 20

182 LIST OF FIGURES

3.3 A typical interpolation scenario where we wish to estimate the
value at point P , by interpolating the values of 4 close by known
points (Q11, Q12, Q21, Q22). 21

3.4 A simple 2D data set, with values ranging between 1 and 6 vi-
sualized using cool and hot colors respectively. On the left (A),
the data is visualized using a box reconstruction filter. On the
right (B), the same data is visualized using a tent reconstruction
filter. Images adapted from the Wikipedia Commons Images by
Berland [129]. 22

3.5 Anisotropic volume data, obtained by scanning a pig carcass. On
the left, the volume is rendered using a nearest-value filter (box
filter). On the right, the same volume is rendered using a tent
filter. 23

3.6 Illustration of an early volume rendering technique. Layered
transparent slices with textures combine to form a visualization
of the volumetric data. Note that the equal distance between
image slices makes for an uneven sampling rate along the rays
traced from the eye. 24

3.7 The essential elements of raytracing. A camera, from which view
rays are projected through an image plane. Upon collision with
a scene object, the angle to existing light sources is calculated
and the final color value is calculated for that specific pixel on
the image plane. 25

3.8 A simplified flowchart of the modern day graphics rendering pipeline. 26

3.9 An illustration of how the approach described by Krüger and
Westermann [65] uses a volume bounding box to perform ray
casting on the programmable fragment processor. (A) A scene
containing an image plane, along with a imaginary view rays
and a volume bounding box. (B) The front side of the volume
bounding box is highlighted to note how each of the imaginative
rays cross the front face before (C) crossing the backside of our
volume bounding box. 27

3.10 A screenshot of directly rendered volume data, using linear in-
terpolation. This produces visual artifacts on the surface, giving
the appearance of skin on the topside surface of the pig, when it
actually consists of muscle and bone. 29

LIST OF FIGURES 183

3.11 The frontfaces of the proxy geometry surrounding the pig carcass
visualized in bright red, intersected by two smaller blue cubes. . 33

3.12 The backfaces of the proxy geometry surrounding the pig carcass
visualized in bright red, intersected by a single small blue cube.
On the left, a modified sequenced convex subtraction algorithm
correctly produces the intersection between the two objects. On
the right, a failure case missing partial geometry. 34

3.13 A visualization of two planes represented via a scalar applied to
the planes normal, yielding its final location and orientation in
world space. 35

3.14 The Phatom Omni haptic feedback device c© Copyright Sensable
Technologies, Inc. Provides the user with six degrees of freedom,
and is capable of giving haptic feedback on three of the six axes.
The input device also features two buttons on the pen. Photo
used with permission from Sensable Technologies, Inc. 36

3.15 A visual illustration of two different approaches for calculating
haptic feedback based on volume data. On the left, the direct
method comprised of several sensory points which together yield
a complete directional force vector. On the right the more indirect
method of having a proxy object interact with the virtual volume
and deriving a force vector between the difference in location of
the ”real” and the proxy object. 37

3.16 An illustration of the estimation of a virtual plane along the iso-
surface of spherical shaped volume data. The VHIP is positioned
on the surface of the volume, while the HIP is inside the volume
itself. The normal of the volume data at the location of the VHIP
is estimated, yielding the gradient of the plane. The vector in be-
tween the VHIP and HIP is projected onto the virtual plane and
used for a small incremental movement of the VHIP. 40

4.1 Half a pig carcass, following the three division. 51

4.2 The meeting room within which the usability test was performed. 58

4.3 Screenshots of the two different rendering options available to the
user. On the left, the standard surface rendering mode. On the
right, the x-ray-like render mode allowing the users to see the
bone structure of the pig carcass more clearly. 60

184 LIST OF FIGURES

4.4 Screenshots of mouse interaction with the cutting planes. 1. A
single cutting plane intersecting the pig carcass. 2. The mouse
cursor interacting with the edge of the cutting plane. 3. The
mouse cursor interacting with the corner of the cutting plane. 4.
The plane being repositioned along the pig carcass. 61

4.5 Four rotational scenarios along with an imaginary line that will
always intersect the plane depending on the rotational scenario.
The highlighted red parts are ”grabbed” by the user, while the
dotted line is the imaginary constantly intersected line. 1. Grab-
bing the vertical edges. 2. Grabbing the horizontal edges. 3.
Grabbing either of two opposed corners. 4. Grabbing the alter-
nate two corners. 62

4.6 The Phantom Omni c© Copyright Sensable Technologies, Inc.
Image user with permission by Sensable Technologies, Inc. 63

4.7 Screenshots of the navigational frames the user is presented with,
and has to align to the corners of the view window to proceed.
The two green corners must be aligned to the bottom corners and
the blue to the top corners. 1. On the left is a screenshot of an, as
of yet, unaligned navigational frame. 2. When any of the corners
are properly aligned, the system provides feedback by displaying
a green square in the respective corner. 64

4.8 The five products shown alongside their virtual counter parts.
The virtual products shown in the bottom are created using the
expert cuts. The most striking visual differences are caused by a
lack of physical simulation, most notable in product 1801, where
the cut flesh does not even out at the end like in the real world.
The other notable difference is skin appearance, caused by inter-
polation, most notable in product 1602 and 1801. 67

4.9 The mean time taken for each participant to complete the five
navigational challenges, along with the standard deviation for
each of the two devices. As previously noted, the second user
could not complete the navigational challenges within the alotted
time and is therefore left unreported. 70

LIST OF FIGURES 185

4.10 The geometric mean time taken by users to solve the individual
navigation tasks using the mouse and the Phantom Omni. The
error bars represent the 95% confidence interval using the geo-
metric standard deviation based on the students t distribution.
Because the standard deviation is calculated on a logarithmic
scale, the upper and lower confidence interval bounds are not
equally distant from the geometric mean. 71

4.11 The average time taken for each participant to create the five
meat products, along with the standard deviation for each of the
two devices. 72

4.12 The geometric mean time taken by users to create each of the
five meat products. The error bars represent the 95% confidence
interval using the geometric standard deviation based on a stu-
dents t distribution. Because the standard deviation is calculated
on a logarithmic scale, the upper and lower confidence interval
bounds are not equally distant from the geometric mean. 73

6.1 Three differently scaled muscle textures combined to create the
final result. The top and middle segment show zoomed in areas
to show finer detail. 82

6.2 On the top, volumetric data from the pig carcass, visualized with-
out enhanced graphics. The colors for the meat, bone, and fat
tissue are the average color values of the textures applied on the
right. On the bottom, volumetric data from the pig carcass, visu-
alized with enhanced graphics. The highlighted sections in yellow
indicate the zoomed section displayed on the right. 83

6.3 The top row shows the original textures, along with the median
neighborhood estimated from every single pixel as a red box in
the texture, using the approach by Hong et al. [54]. The same
neighborhood size is also visualized immediately below the tex-
ture. The bottom row is a scale map representation of each of the
textures, obtained by applying the energy equation by Hong et
al., where each pixel is given an intensity matching the estimated
best neighborhood size surrounding that pixel. The more intense
the pixel, the larger the estimated neighborhood for that location. 84

186 LIST OF FIGURES

6.4 Comparison of the four sample textures synthesized using auto-
matically detected optimal settings (top row) and standardized
settings used by Kopf et al. (bottom row). The quality as mea-
sured by the crude reverse neighborhood lookup comparison test
is listed below each result. The optimized approach results in a
better synthesis in 3 out of the 4 presented textures. The brown
texture (third from the left) is a failure case, showing a slightly
more blurry texture than the standard approach. 85

6.5 3 × 2 comparative screenshots of the (originally) isotropic data
set of a pig carcass. On the left, the unaltered original isotropic
data set. In the middle, a sparse version of the same data set
retaining every 9th slice, interpolated using linear interpolation.
On the right, the same sparse data set interpolated using real-
time GPU accelerated registration-based interpolation. While
the interpolated version lacks the visual fidelity of the isotropic
data set, due to smoothed surface normals, it looks much better
than the linearly interpolated anisotropic data set in the middle. 86

6.6 Average frames per second, measured over a 60 second time pe-
riod, for both hardware supported trilinear interpolation, and reg-
istration based interpolation. Both types of interpolation show
a linear increase as the data set becomes more sparse. Inter-
esting is the fact that at sparsity level 6 the registration based
interpolation equals the trilinearly interpolated isotropic data set. 87

8.1 Exemplars on the three planes orthogonal to the main axes. . . . 99

8.2 Density of neighborhoods on both exemplar and synthesis textures.100

8.3 Neighborhoods on the three planes orthogonal to the main axes
matched to input exemplar neighborhoods. 101

8.4 Three synthesized solids and their two input exemplars (pig mus-
cle tissue). The left and middle synthesis’ yield an unsatisfactory
result. 106

8.5 Three differently scaled muscle textures combined to create the
final result. The top and middle segment show zoomed in areas
to show finer detail. 106

LIST OF FIGURES 187

8.6 On the top, volumetric data from the pig carcass, visualized with-
out enhanced graphics. The colors for the meat, bone, and fat
tissue are the average color values of the textures applied on the
right. On the bottom, volumetric data from the pig carcass, visu-
alized with enhanced graphics. The highlighted sections in yellow
indicate the zoomed section displayed on the right. 107

8.7 Two hams, with and without density value modification. The
highlighted sections in yellow indicate the zoomed section dis-
played on the bottom. 109

8.8 The volume data rotation pattern of the preliminary benchmark.
Unenhanced pig visualized. 110

8.9 A close up of the visualized volumetric data showing computed
tomography artifacts. 111

9.1 Density of extracted neighborhoods in the synthesis texture. Vi-
sualized are all the 8x8 neighborhoods which the blue highlighted
pixel is a member of. 118

9.2 An approximation of the ideal neighborhood size given two differ-
ently scaled textures. On the left, the brick wall with the much
bigger scale . 121

9.3 The top row shows the original textures, along with the median
neighborhood estimated from every single pixel as a red box in
the texture. The same neighborhood size is also visualized imme-
diately below the texture. The bottom row is a scale map rep-
resentation of each of the textures, obtained by applying Hong
et al.s energy equation 9.2, where each pixel is given an inten-
sity matching the estimated best neighborhood size surrounding
that pixel. The more intense the pixel, the larger the estimated
neighborhood for that location. 122

9.4 (a) The ideal tree structure where each new neighborhood is
added to the already existing cluster. (b) The worst case sce-
nario where each neighborhood forms its own cluster. 124

188 LIST OF FIGURES

9.5 On the left, the original tomato exemplar used as input. On the
right, is the resulting synthesized 2D texture using the parameters
as suggested by Kopf et al. Notice that the original exemplar has
been reproduced in its entirety with the original edges pointed
out by the arrows. 128

9.6 Synthesized results using three different exemplars. From left to
right, each column shows the end result produced while retaining
less variance (σ). 131

9.7 The fourteen different input exemplars we use to determine the
various bounds of the synthesis parameters. The blue highlighted
exemplars on the left are also used to measure the efficiency of
our objective measurements. 132

9.8 A synthesized result for different sizes of neighborhoods, using
the tomato picture as input exemplar. 133

9.9 Three plots showing the results of the reverse neighborhood look-
up comparison while varying the parameters specified in Section
9.5.1. Each plot shows the average result of 10 tests including
std. deviation. The line colors refer to which texture being syn-
thesized, as detailed in the legend. 134

9.10 Synthesized results using the zebra (left) and brick (right) tex-
tures as input exemplars. The first/third column show three dif-
ferent results of using the parameters suggested by Kopf et al.
(neighborhoods sized 8x8) and the second/fourth column shows
the results using the objectively measured optimal neighborhood
sizes (16x16 and 12x12). Below each result is the qualitative
measurement calculated via the rnlc test. 135

9.11 Comparison of the four sample textures synthesized using auto-
matically detected optimal settings (top row) and standardized
settings used by Kopf et al. (bottom row). The quality as mea-
sured by the crude rnlc test is listed below each result. 136

10.1 A simplified illustration of an interpolating kernel (green) act-
ing on sparse data (grey areas) containing features (red areas).
The x marks the current value being estimated. Conceptually,
the feature aware kernel changes shape to accommodate feature
detection, while the non-feature aware kernel retains it shape re-
gardless of surrounding features. 143

LIST OF FIGURES 189

10.2 A simplified illustration of the registration interpolation method.
1. A cross section of rendered volume data. The dotted lines
represent the actual location of two data slices. The data is ini-
tially shown using the nearest value filter (no interpolation). 2.
The point we wish to interpolate is shown. 3. The deformation
fields reveal the correspondence vectors for the immediately adja-
cent voxels. 4. Since our point to interpolate is exactly half way
between our data slices, we only use one half of each correspon-
dence vector to find the appropriate voxels to finally interpolate
in between linearly. 145

10.3 A magnified annotated version of fig. 10.2, sub-image 4. 147

10.4 Visualized slice reduction. The black portions represents retained
data. As n (sparsity level) increases, the data becomes more sparse.149

10.5 Comparative chart of the sizes of the originally isotropic pig car-
cass data set and the sparse versions, along with potential defor-
mation field data. 150

10.6 An illustration of an ideal scenario of displacement vectors from
two differently sparse sets. The light gray arrows are derived
from a less sparse set, and in this case add up to the displace-
ment vector calculated from the more sparse data set. In this
ideal scenario, the summation of less sparse displacement vectors
always conform to the displacement vector from the very sparse
data set. In a less ideal scenario the gray arrows would not sum
to the same location as the black arrow. 151

10.7 Five sets of real-time volume rendered images of the originally
isotropic pig dataset, rendered from three different perspectives.
The first set is the densest volume data set, followed by a sparse
set containing every 8th slice of the original using trilinear inter-
polation, followed by the same data set using registration based
interpolation. The final two sets contain every 16th slice of the
original data set using trilinear and registration based interpolation.152

10.8 The Measured Mean Squared Error measured by by comparing
the interpolated density values to the ground truth. 153

10.9 Average frames per second, measured over a 60 second time pe-
riod, for both hardware supported trilinear interpolation, and
registration based interpolation. 154

190 LIST OF FIGURES

11.1 Pig Product Prototyper. Showing a direct volume rendered pig
carcass with a single cut plane, partially selected via the cursor. . 159

11.2 Two screenshots taken from the same camera angle in high- and
low-quality mode respectively. 163

11.3 Pig Product Prototyper visualizing the volume using an x-ray-like
renderer. 164

11.4 Four different screenshots depicting mouse interaction with the
PPP application. 1. A single cut plane applied to the pig carcass.
2. Left mouse button interaction with an edge of the cut plane
allows the user to move the two edge end-points around the cen-
ter of the cut, effectively shifting all four visualized corners. 3.
Left mouse button interaction with a corner allows the plane to
be rotated along the axis running between the two neighboring
points. 4. Right mouse button interaction with any part of the
plane allows it to be translated along the pigs current orientation. 165

11.5 Photo of the Phantom Omni haptic feedback device from Sens-
able, used with permission by Sensable Technologies Inc. 166

11.6 The five products shown alongside their virtual counter parts.
The virtual products shown in the bottom are created using the
expert cuts. The most striking visual differences are caused by a
lack of physical simulation, most notable in product 1801, where
the cut flesh does not even out at the end like in the real world.
The other notable difference is skin appearance caused by inter-
polation most notable in product 1602 and 1801. 167

11.7 The meeting room housing the test set up for our usability test,
complete with complimentary refreshments to motivate partici-
pants. 170

11.8 Screenshots of a single navigational frame during navigation prac-
tice. 1. An example of what the user initially sees during the
navigational challenge. 2. Aligning the frame to fit the view win-
dow with the green corners at the bottom and blue corners at the
top completes a single navigational task. 171

11.9 The geometric mean time taken by users to solve the individ-
ual navigation tasks using the mouse and the Phantom Omni.
The error bars represent the 95% confidence interval using the
geometric standard deviation based on a students t distribution. 172

191

11.10The geometric mean time taken by users to create each of the five
meat products. The error bars represent the 95% confidence in-
terval using the geometric standard deviation based on a students
t distribution. 173

11.11The percentage difference of the product created by the user rela-
tive to the product created using expert knowledge. An example
of a product that is 100% different, could in this case be a product
that is twice the size of the expert version. 174

192 Bibliography

Bibliography

[1] Cgtextures. http://www.cgtextures.com/, 2011.

[2] 2textured. http://www.2textured.com/, 2012.

[3] Archive textures. http://archivetextures.net/, 2012.

[4] Grunge textures. http://www.grungetextures.com/, 2012.

[5] Mayang’s free textures version 15. http://mayang.com/textures/, 2012.

[6] Texture king. http://www.textureking.com/, 2012.

[7] M. J. Ackerman. The visible human project: A resource for education.
Acad. Med., 74:667 – 670, 1999.

[8] Arthur Appel. Some techniques for shading machine renderings of solids.
In Proceedings of the April 30–May 2, 1968, spring joint computer con-
ference, AFIPS ’68 (Spring), pages 37–45, New York, NY, USA, 1968.
ACM.

[9] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability studies,
4(3):114–123, 2009.

[10] A. Bangor, P.T. Kortum, and J.T. Miller. An empirical evaluation of
the system usability scale. Intl. Journal of Human–Computer Interaction,
24(6):574–594, 2008.

[11] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman. Patchmatch:
a randomized correspondence algorithm for structural image editing. In
ACM Transactions on Graphics (TOG), volume 28, page 24. ACM, 2009.

http://www.cgtextures.com/
http://www.2textured.com/
http://archivetextures.net/
http://www.grungetextures.com/
http://mayang.com/textures/
http://www.textureking.com/

194 BIBLIOGRAPHY

[12] E. C. Beckmann. CT scanning the early days. British Journal of Radiol-
ogy, 79(937):5–8, January 2006.

[13] G. Bernstein and D. Fussell. Fast, exact, linear booleans. In Computer
Graphics Forum, volume 28, pages 1269–1278. Wiley Online Library, 2009.

[14] B.T. Bethea, A.M. Okamura, M. Kitagawa, T.P. Fitton, S.M. Cattaneo,
V.L. Gott, W.A. Baumgartner, and D.D. Yuh. Application of haptic
feedback to robotic surgery. Journal of Laparoendoscopic & Advanced
Surgical Techniques, 14(3):191–195, 2004.

[15] P. Brodatz. Textures: a photographic album for artists and designers,
volume 66. Dover New York, 1966.

[16] J. Brooke. Sus: A ”quick and dirty” usability scale. P. W. Jordan,
B. Thomas, B. A. Weerdmeester, & A. L. McClelland (Eds.) Usability
Evaluation in Industry, pages 189–194, 1996.

[17] C.D. Bruyns, S. Senger, A. Menon, K. Montgomery, S. Wildermuth, and
R. Boyle. A survey of interactive mesh-cutting techniques and a new
method for implementing generalized interactive mesh cutting using vir-
tual tools. The journal of visualization and computer animation, 13(1):21–
42, 2002.

[18] P. Böttcher, J. Maierl, T. Schiemann, C. Glaser, R. Weller, K.H. Hoehne,
M. Reiser, and H.G. Liebich. The visible animal project: A three-
dimensional, digital database for high quality three-dimensional recon-
structions. Veterinary Radiology & Ultrasound, 40(6):611–616, 1999.

[19] Jesus J. Caban and Penny Rheingans. Texture-based transfer functions
for direct volume rendering. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1364–1371, 2008.

[20] D. Chang. Haptics: gaming’s new sensation. Computer, 35(8):84–86, 2002.

[21] K.W. Chen, P.A. Heng, and H. Sun. Direct haptic rendering of isosurface
by intermediate representation. In Proceedings of the ACM symposium on
Virtual reality software and technology, pages 188–194. ACM, 2000.

[22] Michael Chen, S. Joy Mountford, and Abigail Sellen. A study in interac-
tive 3-d rotation using 2-d control devices. SIGGRAPH Comput. Graph.,
22(4):121–129, June 1988.

[23] A. Chourasia and J.P. Schulze. Data centric transfer functions for high dy-
namic range volume data. In Proc. International Conf. Computer Graph-
ics, Visualization, and Computer Vision, 2007.

BIBLIOGRAPHY 195

[24] Line Katrine Harder Clemmensen and Lasse Farnung Laursen. Improving
texture optimization with application to visualizing meat products. IMM-
Technical Report-Â2011 ; 15, pages 81–86, Kgs. Lyngby, Denmark, 2011.
Technical University of Denmark. Presented at: Scandinavian Workshop
on Imaging Food Quality, SWIFQ : Ystad, Sweden, 2011.

[25] Timothy J. Cullip and Ulrich Neumann. Accelerating volume reconstruc-
tion with 3d texture hardware. Technical report, Chapel Hill, NC, USA,
1994.

[26] DC. Danish crown. http://www.danishcrown.dk/, April 2012.

[27] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis
and synthesis of texture images. In SIGGRAPH ’97: Proceedings of the
24th annual conference on Computer graphics and interactive techniques,
pages 361–368, New York, NY, USA, 1997. ACM Press/Addison-Wesley
Publishing Co.

[28] DMRI. Danish meat research institute. http://www.teknologisk.dk/dmri,
April 2012.

[29] Feng Dong and Gordon J. Clapworthy. Volumetric texture synthesis for
non-photorealistic volume rendering of medical data. The Visual Com-
puter, 21:463–473, 2005.

[30] Yue Dong, Sylvain Lefebvre, Xin Tong, and George Drettakis. Lazy solid
texture synthesis. In Computer Graphics Forum (Proceedings of the Eu-
rographics Symposium on Rendering), 2008.

[31] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume render-
ing. In SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, pages 65–74, New York,
NY, USA, 1988. ACM.

[32] Søren Gylling Hemmingsen Erbou. Modeling the Biological Diversity of
Pig Carcasses. PhD thesis, Technical University of Denmark, Department
of Informatics and Mathematical Modeling, Image Analysis and Computer
Graphics, Kgs. Lyngby, Denmark, feb 2009.

[33] Landbrug & Fødevarer. Landburgsvareeksporten. http:
//www.lf.dk/Tal og Analyser/Aktuelle statistikker/∼/media/lf/
Tal%20og%20analyser/Aktuelle%20statistikker/eksportstatistik/
Landbrugsvareeksporten1111.ashx, February 2012.

[34] Landbrug & Fødevarer. Slagtninger af svin i danmark. http://www.lf.
dk/Tal og Analyser/Aktuelle statistikker/Svin/slagtninger.aspx, Febru-
ary 2012.

http://www.danishcrown.dk/
http://www.teknologisk.dk/dmri
http://www.lf.dk/Tal_og_Analyser/Aktuelle_statistikker/~/media/lf/Tal%20og%20analyser/Aktuelle%20statistikker/eksportstatistik/Landbrugsvareeksporten1111.ashx
http://www.lf.dk/Tal_og_Analyser/Aktuelle_statistikker/~/media/lf/Tal%20og%20analyser/Aktuelle%20statistikker/eksportstatistik/Landbrugsvareeksporten1111.ashx
http://www.lf.dk/Tal_og_Analyser/Aktuelle_statistikker/~/media/lf/Tal%20og%20analyser/Aktuelle%20statistikker/eksportstatistik/Landbrugsvareeksporten1111.ashx
http://www.lf.dk/Tal_og_Analyser/Aktuelle_statistikker/~/media/lf/Tal%20og%20analyser/Aktuelle%20statistikker/eksportstatistik/Landbrugsvareeksporten1111.ashx
http://www.lf.dk/Tal_og_Analyser/Aktuelle_statistikker/Svin/slagtninger.aspx
http://www.lf.dk/Tal_og_Analyser/Aktuelle_statistikker/Svin/slagtninger.aspx

196 BIBLIOGRAPHY

[35] Landbrug & Fødevarer. Statistics 2010 pigmeat. http://www.lf.
dk/Tal og Analyser/Aarstatistikker/Statistik svin/∼/media/lf/Tal%
20og%20analyser/Aarsstatistikker/Statistik%20svin/2010/108-2011 A5%
20Statistik%20UK2010 WEB.ashx, February 2012.

[36] David H. Frakes, Lakshmi P. Dasi, Kerem Pekkan, Hiroumi D. Kitajima,
Kartik Sundareswaran, Ajit P. Yoganathan, and Mark J. T. Smith. A new
method for registration-based medical image interpolation. IEEE Trans.
Med. Imaging, 27(3):370–377, 2008.

[37] T.A. Galyean and J.F. Hughes. Sculpting: An interactive volumetric
modeling technique. In ACM SIGGRAPH Computer Graphics, volume 25,
pages 267–274. ACM, 1991.

[38] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. k-
nearest neighbor search: fast GPU-based implementations and application
to high-dimensional feature matching. In IEEE International Conference
on Image Processing (ICIP), Hong Kong, China, September 2010.

[39] D. Ghazanfarpour and J. M. Dischler. Spectral analysis for automatic 3-d
texture generation. Computers & Graphics, 19(3):413 – 422, 1995.

[40] Bjørn Godske. Slagterirobot skal skære lige til benet. Ingeniøren, 2008.
http://ing.dk/artikel/88774-slagterirobot-skal-skaere-lige-til-benet.

[41] L.W. Goldman. Principles of ct and ct technology. Journal of nuclear
medicine technology, 35(3):115–128, 2007.

[42] A.D. Gregory, S.A. Ehmann, and M.C. Lin. intouch: Interactive mul-
tiresolution modeling and 3d painting with a haptic interface. In Virtual
Reality, 2000. Proceedings. IEEE, pages 45–52. IEEE, 2000.

[43] G. J. Grevera and J. K. Udupa. An Objective Comparison of 3-D Image In-
terpolation Methods. IEEE Transactions on Medical Imaging, 17(4):642–
652, August 1998.

[44] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel Weiskopf,
and Klaus Engel. Real-time Volume Graphics, pages 81–102. A. K. Peters,
Ltd., Natick, MA, USA, 2006.

[45] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel Weiskopf,
and Klaus Engel. Real-time Volume Graphics, pages 163–185. A. K.
Peters, Ltd., Natick, MA, USA, 2006.

[46] Markus Hadwiger, Joe M. Kniss, Christof Rezk-salama, Daniel Weiskopf,
and Klaus Engel. Real-time Volume Graphics, pages 114–116. A. K.
Peters, Ltd., Natick, MA, USA, 2006.

http://www.lf.dk/Tal_og_Analyser/Aarstatistikker/Statistik_svin/~/media/lf/Tal%20og%20analyser/Aarsstatistikker/Statistik%20svin/2010/108-2011_A5%20Statistik%20UK2010_WEB.ashx
http://www.lf.dk/Tal_og_Analyser/Aarstatistikker/Statistik_svin/~/media/lf/Tal%20og%20analyser/Aarsstatistikker/Statistik%20svin/2010/108-2011_A5%20Statistik%20UK2010_WEB.ashx
http://www.lf.dk/Tal_og_Analyser/Aarstatistikker/Statistik_svin/~/media/lf/Tal%20og%20analyser/Aarsstatistikker/Statistik%20svin/2010/108-2011_A5%20Statistik%20UK2010_WEB.ashx
http://www.lf.dk/Tal_og_Analyser/Aarstatistikker/Statistik_svin/~/media/lf/Tal%20og%20analyser/Aarsstatistikker/Statistik%20svin/2010/108-2011_A5%20Statistik%20UK2010_WEB.ashx
http://ing.dk/artikel/88774-slagterirobot-skal-skaere-lige-til-benet

BIBLIOGRAPHY 197

[47] Mads Fogtmann Hansen. Designing and analyzing virtual cuts in 3d mod-
els of pig bodies by mapping cuts from a statistical atlas. Presented at:
European congress of Chemical Engineering : Bella Center, Copenhagen,
2006.

[48] Mads Fogtmann Hansen. The virtual knife. PhD thesis, Technical Univer-
sity of Denmark, Department of Informatics and Mathematical Modeling,
Image Analysis and Computer Graphics, Kgs. Lyngby, jul 2009.

[49] M. Harders, A. Barlit, K. Akahane, M. Sato, and G. Székely. Comparing
6dof haptic interfaces for application in 3d assembly tasks. In Proc. of
EuroHaptics, July 2006.

[50] B.D. Harper and K.L. Norman. Improving user satisfaction: The ques-
tionnaire for user interaction satisfaction version 5.5. In Proceedings of
the 1st Annual Mid-Atlantic Human Factors Conference, pages 224–228,
1993.

[51] P. Harrison. A non-hierarchical procedure for re-synthesis of complex
textures. In W S C G ‘ 2001, VOLS I & II, CONFERENCE PROCEED-
INGS, 2001.

[52] David J. Heeger and James R. Bergen. Pyramid-based texture analy-
sis/synthesis. In SIGGRAPH ’95: Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques, pages 229–238,
New York, NY, USA, 1995. ACM.

[53] Lars Hinrichsen. Manufacturing technology in the danish pig slaughter
industry. Meat Science, 84(2):271 – 275, 2010. ¡ce:title¿Special Issue: 55th
International Congress of Meat Science and Technology (55th ICoMST),
16-21 August 2009, Copenhagen, Denmark¡/ce:title¿.

[54] B.W. Hong, S. Soatto, K. Ni, and T. Chan. The scale of a texture and its
application to segmentation. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[55] B. Itkowitz, J. Handley, and W. Zhu. The openhaptics toolkit: a library for
adding 3d touch navigation and haptics to graphics applications. In Euro-
haptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual
Environment and Teleoperator Systems, 2005. World Haptics 2005. First
Joint, pages 590–591. IEEE, 2005.

[56] Robert Jagnow, Julie Dorsey, and Holly Rushmeier. Stereological tech-
niques for solid textures. ACM Trans. Graph., 23(3):329–335, 2004.

[57] Nielsen J.U, Fertin C., and Christensen H. Up-to-date equipment for pig
slaughtering, cutting and boning and their influence on product safety.
Tehnologija mesa, 46(1-2):62–66, 2005.

198 BIBLIOGRAPHY

[58] Willi Kalender and Kevin O Khadivi. Computed tomography: Fundamen-
tals, system technology, image quality, applications, 2nd edition. Medical
Physics, 33(8):3076–3076, 2006.

[59] David Victor Keyson. Touch In User Interface Navigation. PhD thesis,
Technical University of Eindhoven, 1996.

[60] J. Kirakowski and M. Corbett. Sumi: The software usability measurement
inventory. British journal of educational technology, 24(3):210–212, 1993.

[61] Niels Christian Kjærsgaard. Optimization of the raw material use at Dan-
ish slaughterhouses. PhD thesis, Technical University of Denmark, De-
partment of Management Engineering, Operations Research, sep 2008.

[62] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani
Lischinski, and Tien-Tsin Wong. Solid texture synthesis from 2d exem-
plars. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007),
26(3):2:1–2:9, 2007.

[63] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani
Lischinski, and Tien-Tsin Wong. Solid texture synthesis from 2d exem-
plars. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007),
26(3):2:1–2:9, 2007.

[64] Ross Koppel, Joshua P. Metlay, Abigail Cohen, Brian Abaluck, A. Russell
Localio, Stephen E. Kimmel, and Brian L. Strom. Role of computerized
physician order entry systems in facilitating medication errors. JAMA:
The Journal of the American Medical Association, 293(10):1197–1203,
2005.

[65] Jens Krüger and Rüdiger Westermann. Acceleration techniques for gpu-
based volume rendering. In IEEE Visualization, pages 287–292, 2003.

[66] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture
optimization for example-based synthesis. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Papers, pages 795–802, New York, NY, USA, 2005. ACM.

[67] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: image and video synthesis using graph cuts. ACM
Trans. Graph., 22:277–286, July 2003.

[68] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proceedings of the 21st
annual conference on Computer graphics and interactive techniques, pages
451–458. ACM, 1994.

BIBLIOGRAPHY 199

[69] H. Ólafsdottir, H. Pedersen, M. S. Hansen, M. Lyksborg, S. Darkner,
and R. Larsen. Registration-based interpolation applied to cardiac mri.
In proceedinsg of SPIE - International Society for Optical Engineering,
International Symposium on Medical Imaging 2010, 2010.

[70] Jakob Andreas Bærentzen Takeo Igarashi Bjarne Kjær Ersbøll Lasse Far-
nung Laursen, Line Harder Clemmensen. Pig product prototyper: Cutting
interface design. NordiCHI 2012 Proceedings.

[71] Jakob Andreas Bærentzen Takeo Igarashi Bjarne Kjær Ersbøll Lasse Far-
nung Laursen, Line Harder Clemmensen. Automatic quality measurement
and parameter selection for example-based texture synthesis. Technical
Report IMM-Technical-Report-2012-07, Technical University of Denmark,
Department of Informatics and Mathematical Modeling, April 2012.

[72] Lasse Laursen, Bjarne Kjær Ersbøll, and Jakob Andreas Bærentzen.
Anisotropic 3d texture synthesis with application to volume rendering.
In Proceedings of WSCG’2011 (19-th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision’2011),
2011.

[73] Lasse Farnung Laursen and Bjarne Kjær Ersbøll. Gazetrain: A case study
of an action oriented gaze-controlled game. pages 61–65, Kgs. Lyngby,
Denmark, 2009. Technical University of Denmark. Presented at: The
5th Conference on Communication by Gaze Interaction - COGAIN 2009:
Gaze Interaction For Those Who Want It Most.

[74] Lasse Farnung Laursen, Bjarne Kjær Ersbøll, and Jakob Andreas
Bærentzen. Anisotropic 3d texture synthesis with application to volume
rendering. In WSCG’ 2011 Communication Papers Proceedings, pages 49–
57, 2011. Presented at: International Conference on Computer Graphics,
Visualization and Computer Vision, WSCG ; 19 : Plzen, Czech Republic,
2011.

[75] Lasse Farnung Laursen, Hildur Ólafsdottir, Jakob Andreas Bærentzen,
Michael Sass Hansen, and Bjarne Kjær Ersbøll. Registration-based inter-
polation real-time volume visualization. In Proceedings of the 28th Spring
Conference on Computer Graphics. ACM, 2012.

[76] SD Laycock and AM Day. A survey of haptic rendering techniques. In
Computer Graphics Forum, volume 26, pages 50–65. Wiley Online Library,
2007.

[77] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthe-
sis. ACM TRANSACTIONS ON GRAPHICS, pages 777–786, 2005.

200 BIBLIOGRAPHY

[78] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d
surface construction algorithm. In ACM Siggraph Computer Graphics,
volume 21, pages 163–169. ACM, 1987.

[79] Aidong Lu, David S. Ebert, Wei Qiao, Martin Kraus, and Benjamin Mora.
Volume illustration using wang cubes. ACM Trans. Graph., 26, June 2007.

[80] Sean Luke. Essentials of Metaheuristics. Lulu, 2009. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[81] A.M. Lund. Measuring usability with the use questionnaire. Usability and
User Experience, 8(2):8, 2001.

[82] Felix Manke and Burkhard C. Wuensche. Texture-enhanced direct volume
rendering. In Proceedings of the 4th International Conference on Com-
puter Graphics Theory and Applications (GRAPP 2009), pages 185–190,
Lisbon, Portugal, 2009.

[83] Felix Manke and Burkhard Wunsche. Fast three-dimensional texture syn-
thesis. New Zealand Computer Science Research Student Conference,
2008.

[84] Erik Meijering. A chronology of interpolation: From ancient astronomy
to modern signal and image processing. In Proceedings of the IEEE, pages
319–342, 2002.

[85] B. Menelas, M. Ammi, and P. Bourdot. A flexible method for haptic
rendering of isosurface from volumetric data. Haptics: Perception, Devices
and Scenarios, pages 687–693, 2008.

[86] R.G. Miller and B.W. Brown. Beyond ANOVA: basics of applied statistics.
Chapman & Hall/CRC, 1997.

[87] Tobias Moench, Simon Adler, and Bernhard Preim. Staircase-aware
smoothing of medical surface meshes. In Eurographics Workshop on Visual
Computing for Biology and Medicine (VCBM), 2010.

[88] Thomas Hammershaimb Mosbech. Computed Tomography in the Mod-
ern Slaughterhouse. PhD thesis, Technical University of Denmark, De-
partment of Informatics and Mathematical Modeling, Image Analysis and
Computer Graphics, Kgs. Lyngby, Denmark, 2011.

[89] David M. Mount and Sunil Arya. Ann: A library for approximate nearest
neighbor searching. http://www.cs.umd.edu/ mount/ANN/, 2010.

[90] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda, editors.
Software Automatic Tuning: From Concepts to State-of-the-Art Results.
Springer, 1st edition. edition, 9 2010.

BIBLIOGRAPHY 201

[91] National Electrical Manufacturers Association. Digital Imaging and Com-
munications in Medicine (DICOM), 3.1-2011 edition, 2011.

[92] J. Nickolls and W.J. Dally. The gpu computing era. Micro, IEEE,
30(2):56–69, 2010.

[93] Jakob Nielsen. Medical usability: How to kill patients through bad design.
http://www.useit.com/alertbox/20050411.html, February 2012.

[94] P. Omni. Technical specifications, 2007.

[95] K.L. Palmerius. Direct Volume Haptics for Visualization. PhD thesis,
Department of Science and Technology, Linköpings universitet, 2007.

[96] G. P. Penney, J. A. Schnabel, D. Rueckert, M. A. Viergever, and W. J.
Niessen. Registration-based interpolation. IEEE transactions on medical
imaging, 23(7):922–926, July 2004.

[97] Ken Perlin. Noise hardware. In Real-Time Shading SIGGRAPH Course
Notes (2001), Olano M., (Ed.)., 2001.

[98] A. Petersik, B. Pflesser, U. Tiede, K.H. Höhne, and R. Leuwer. Realistic
haptic interaction in volume sculpting for surgery simulation. Surgery
Simulation and Soft Tissue Modeling, pages 1001–1001, 2003.

[99] Beryl Plimmer. Experiences with digital pen, keyboard and mouse usabil-
ity. Journal on Multimodal User Interfaces, 2(1):13–23, July 2008.

[100] J.D. Power and Associates. J.d. power and associates reports: The right
blend of design and technology is critical to creating an exceptional user
experience with smartphones and traditional mobile devices. Technical
report, J.D. Power and Associates, 2011.

[101] Jeffrey Rubin and Dana Chisnell. Handbook of Usability Testing: Howto
Plan, Design, and Conduct Effective Tests, 2nd Edition. Wiley, 2 edition,
May 2008.

[102] Y. Rubner, C. Tomasi, and L.J. Guibas. A metric for distributions with
applications to image databases. In Computer Vision, 1998. Sixth Inter-
national Conference on, pages 59–66. IEEE, 1998.

[103] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J.
Hawkes. Nonrigid registration using free-form deformations: application
to breast mr images. Medical Imaging, IEEE Transactions on, 18(8):712
–721, aug. 1999.

[104] J.H. Saltzer and F. Kaashoek. Principles of computer system design: an
introduction. Morgan Kaufmann, 2009.

http://www.useit.com/alertbox/20050411.html

202 BIBLIOGRAPHY

[105] J. Sauro and J.R. Lewis. Average task times in usability tests: what to
report? In Proceedings of the 28th international conference on Human
factors in computing systems, pages 2347–2350. ACM, 2010.

[106] Sensable. The freeform R© systems. http://www.sensable.com/
products-freeform-systems.htm, April 2012.

[107] D. Shreiner, M. Woo, J. Neider, and T. Davis. OpenGL(R) Program-
ming Guide : The Official Guide to Learning OpenGL(R), Version 2 (5th
Edition). Addison-Wesley Professional, August 2005.

[108] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing vi-
sual data using bidirectional similarity. In Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[109] M. Smithson. Confidence intervals: Quantitative applications in the social
sciences series, no. 140, 2003.

[110] N.T. Stewart. An Image-Space Algorithm for Hardware-Based Rendering
of Constructive Solid Geometry. PhD thesis, RMIT University, 2008.

[111] D.L. Streiner et al. Maintaining standards: differences between the stan-
dard deviation and standard error, and when to use each. Canadian jour-
nal of psychiatry. Revue canadienne de psychiatrie, 41(8):498, 1996.

[112] G.T. Sung and I.S. Gill. Robotic laparoscopic surgery: a comparison of
the da vinci and zeus systems. Urology, 58(6):893–898, 2001.

[113] El-Ghazali Talbi. Metaheuristics: From Design to Implementation (Wiley
Series on Parallel and Distributed Computing). Wiley, 6 2009.

[114] U. Tiede, T. Schiemann, and K.H. Hohne. High quality rendering of
attributed volume data. In Visualization’98. Proceedings, pages 255–262.
Ieee, 1998.

[115] Thomas Tullis and William Albert. Measuring the User Experience: Col-
lecting, Analyzing, and Presenting Usability Metrics (Interactive Tech-
nologies). Morgan Kaufmann, March 2008.

[116] Martin Vester-Christensen. Image Registration and Optimization in the
Virtual Slaughterhouse. PhD thesis, Technical University of Denmark,
Department of Informatics and Mathematical Modeling, Â, Kgs. Lyngby,
Denmark, feb 2009.

[117] Martin Vester-Christensen, SÃ¸ren Gylling Hemmingsen Erbou,
Mads Fogtmann Hansen, E.V. Olsen, L.B. Christensen, M. Hviid,
Bjarne Kjær Ersbøll, and Rasmus Larsen. Virtual dissection of pig
carcasses. Meat Science, 81(4):699–704, 2009.

http://www.sensable.com/products-freeform-systems.htm
http://www.sensable.com/products-freeform-systems.htm

BIBLIOGRAPHY 203

[118] S.A. Wall, K. Paynter, A.M. Shillito, M. Wright, and S. Scali. The effect
of haptic feedback and stereo graphics in a 3d target acquisition task. In
Proceedings of eurohaptics, pages 23–28, 2002.

[119] H. Wang. Proving theorems by pattern recognition i. Communications of
the ACM, 3(4):220–234, 1960.

[120] H. Wang. Games, logic and computers. Scientific American, 213(5):98–
106, 1965.

[121] S.W. Wang and A.E. Kaufman. Volume sculpting. In Proceedings of the
1995 symposium on Interactive 3D graphics, pages 151–ff. ACM, 1995.

[122] Yajun Wang, Jiaping Wang, Nicolas Holzschuch, Kartic Subr, Jun-Hai
Yong, and Baining Guo. Real-time rendering of heterogeneous translucent
objects with arbitrary shapes. Computer Graphics Forum, 29:497–506,
April 2010.

[123] Li-Yi Wei. Texture synthesis by fixed neighborhood searching. PhD thesis,
Stanford, CA, USA, 2002. Adviser-Levoy, Marc.

[124] Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. Inverse texture synthesis. ACM Trans. Graph., 27:52:1–52:9,
August 2008.

[125] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the
art in example-based texture synthesis. In Eurographics 2009, State of the
Art Report, EG-STAR. Eurographics Association, 2009.

[126] Li-Yi Wei and Marc Levoy. Order-independent texture synthesis. Earlier
version is Stanford University Computer Science TR-2002-01.

[127] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured
vector quantization. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 479–
488, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[128] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion
of video. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):463–476, 2007.

[129] Wikipedia. Bicubic interpolation — Wikipedia, the free encyclopedia,
2012. [Online; accessed 11-April-2012].

[130] Wikipedia. Line-plane intersection — Wikipedia, the free encyclopedia,
2012. [Online; accessed 09-April-2012].

[131] Wikipedia. Simulated annealing — Wikipedia, the free encyclopedia,
2012. [Online; accessed 18-April-2012].

204 BIBLIOGRAPHY

[132] Qing Wu and Yizhou Yu. Feature matching and deformation for texture
synthesis. ACM Trans. Graph., 23:364–367, August 2004.

[133] Shumin Zhai, Paul Milgram, and William Buxton. The influence of muscle
groups on performance of multiple degree-of-freedom input. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems:
common ground, CHI ’96, pages 308–315, New York, NY, USA, 1996.
ACM.

[134] Weihang Zhu and Yuan-Shin Lee. Five-axis pencil-cut planning and vir-
tual prototyping with 5-dof haptic interface. Computer-Aided Design,
36(13):1295–1307, 2004.

	Abstract
	Resumé
	Preface
	List of Papers
	Acknowledgments
	Contents
	I Summation
	Introduction
	Motivation and Objectives
	Thesis Outline
	Abbreviations

	Background
	Evolution of the Modern Abattoir
	Product Prototyping
	Visual Appearance
	Interaction

	Volume Data
	Interpolation
	Rendering
	Transfer Functions

	Texture Synthesis
	GPU Accelerated Volume Cutting
	Haptic Rendering
	Isosurface Haptic Rendering

	Human Computer Interaction
	Interface Design
	Usability Study
	Overview
	Planning and Information Gathering
	PPP Planning

	Test participants
	Performance metrics
	Formative Usability Study
	PPP Testing procedure
	Pilot Study
	Expert Product Creation

	Results
	PPP Results

	Discussion

	Future Parameterization
	Future Integration

	Overview of Contributions
	Customized Texture Transfer function
	Automatic Quality Measurement and Parameter Selection for Example-based Texture Synthesis
	Real-Time Registration Based Volume Interpolation
	Pig Product Prototyper: Cutting interface design

	Conclusion
	Summary
	Conclusion

	II Contributions
	Anisotropic 3D texture synthesis with application to volume rendering
	Introduction
	Related Work
	Solid Texture Synthesis
	Volumetric Transfer Function

	Overview
	Solid Texture Synthesis
	Approximate Nearest Neighbor
	Weighting Scheme
	Meanshift
	Histogram Matching
	Synthesis Convergence Conditions

	Exemplar Acquisition
	Rendering
	Results
	Conclusions and Future Work
	Acknowledgments

	Automatic Quality Measurement and Parameter Selection for Example-based Texture Synthesis
	Introduction
	Related Work
	Texture Synthesis
	Direct Parameter Optimization
	Indirect Parameter Optimization
	Accelerating Texture Synthesis

	Texture Optimization
	Synthesis Parameters

	Direct Parameter Selection
	Neighborhood size estimation
	Convergence estimation

	Indirect Parameter Selection
	Tested Synthesis Parameters
	Texture Similarity Measurements
	Determining parameter bounds
	Evaluate objective measurement
	Automated texture synthesis

	Indirect Parameter Selection Results
	Summary

	Limitations
	Direct Parameter Selection
	Indirect Parameter Selection

	Conclusion
	Future Work

	Registration-based Interpolation Real-Time Volume visualization
	Introduction
	Related Work
	Overview
	Registration Based Interpolation
	GPU Implementation Notes

	Testing
	Setup and protocol
	Quantitative Evaluation
	Multiple Deformation Slice Correspondence Comparison
	Qualitative Evaluation
	Performance Benchmark

	Conclusion
	Future Work

	Pig Product Prototyper: Cutting interface design
	Introduction
	Related Work
	Design Process
	Implementation details
	Interfaces
	Mouse Interface
	Phantom Omni

	Evaluation
	Expert Product Creation
	Formative Usability Study
	Results

	Conclusion
	Future Work

	Acknowledgments

	III Appendix

