
Automatic Quality Measurement
and Parameter Selection for

Example-based Texture Synthesis

L. F. Laursen & L. H. Clemmensen & J. A. Bærentzen &
T. Igarashi & B. K. Ersbøll

Kongens Lyngby 2012



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192



ii

Abstract

Texture synthesis algorithms have been researched extensively in
the past decade. However, most synthesis algorithms are governed
by a set of parameters and produce different results depending on
which parameter settings are chosen in conjunction with an exem-
plar used as a basis for synthesis. So far, automatically selecting
parameters suitable for synthesis has been a relatively unexplored
topic. In effect, this makes texture synthesis supervised rather than
fully automatic.

In this technical paper, we propose automatic parameter opti-
mization methods for example based texture synthesis. We cover
research to directly estimate specific texture synthesis parameters,
such as patch size and iteration convergence, based on input tex-
tures. We also examine various similarity measures and evaluate
their effectiveness. The goal for each measure is to properly evalu-
ate how well the resulting synthesis compares to the original input.
A good similarity measure will enable the search for the optimal tex-
ture synthesis parameters by maximizing the quality of the synthesis
as a function of parameters.

We apply presented methods to a state of the art texture syn-
thesis algorithm, namely the one proposed by Kopf et al [14]. It
is easy to find a set of exemplars for which there is no single op-
timal set of settings. The results show a promising foundation for
further research in establishing an automated optimal synthesis for
a multitude of textures.

1 Introduction

Textures are commonly used in computer graphics to enhance the appearance
of a scene. Despite the abundance of online texture repositories [1, 5, 3, 6, 4, 2],
the acquisition of new textures still poses challenges. Example-based Texture
Synthesis mitigates this issue by artificially creating new textures from a small
input example.

Like most other texture synthesis algorithms, example-based texture synthesis
requires manual parameter tweaking to obtain the optimal result in the short-
est amount of time. The proper settings aid the algorithms in detecting and
recreating the structure present in the examples provided.

We examine two general approaches to improving a state of the art texture syn-



2 Related Work iii

thesis algorithm presented by Kwatra et al. [15] and further refined by Kopf
et al. [14]. The texture synthesis algorithm works by minimizing an energy
function describing the difference between the input texture(s) (exemplars) pro-
vided by the user, and the texture being synthesized. This is effectively done by
finding matching texture patches (neighborhoods) and iteratively altering the
synthesized patches to look more like the input exemplar(s).

In our first approach we examine methods with which to automatically estimate
the optimal synthesis parameters by examining the input exemplar. In the
second, we evaluate methods with which to provide a qualitative measure for
the resulting synthesized texture. A reliable qualitative measurement would
allow us to maximize the quality of the synthesis as a function of the input
parameters. We propose a heuristic with which to automate the tweaking of the
synthesis parameters based on the qualitative measurement.

The structure of this report is as follows: Related work to both presented ap-
proaches is discussed in section 2. The texture synthesis algorithm these ap-
proaches are applied to, as well as its associated parameters, is detailed in
section 3 and 3.1, respectively. Work involving the direct estimation of param-
eters is presented in section 4, while section 5 covers the indirect estimation of
parameters via a qualitative measure. Preliminary results of the direct method
is presented in section 4, while more comprehensive results from the indirect
method is detailed in section 6. Current limitations of both approaches is pre-
sented in 7. We conclude our findings in section 8 and discuss future work in
section 9.

2 Related Work

We first present work related to the texture synthesis algorithm to which we
apply automated parameter selection. We then detail work specifically related
to the direct and indirect parameter optimization approaches.

Additionally, a number of papers exist that present altered and enhanced ver-
sions of existing texture synthesis methods, for the purposes of accelerating
them. Although this is somewhat removed from the topic of automatic parame-
ter selection, it shares a similar goal. The accceleration of the texture synthesis
algorithm while attempting to maintain a quality result. We note a few publi-
cations presenting the aforementioned type of research.



iv

2.1 Texture Synthesis

A large body of work within texture synthesis research [27] has led to the algo-
rithm presented by Kopf et al. [14].

Texture synthesis algorithms have evolved over the past decade from being para-
metric [12] to non-parametric [9], pixel [29] and patch-based [16], to optimization-
based methods [15, 14]. As previously noted, the publications have focused on
either presenting a new and different approach, or evolving an existing method
to produce better results. A recent publication [26] has even focused on re-
verse texture synthesis, which compacts an existing texture down to a smaller
representation, from which a new texture is more easily synthesized.

We present results of automatic parameter selection conducted on the optimization-
based approach described by Wexler et al. [30], applied by Kwatra et al. [15]
and further refined by Kopf et al. [14].

2.2 Direct Parameter Optimization

To the best of our knowledge, no paper exists with the explicit goal of optimizing
the given parameters of a texture synthesis algorithm, apart from the paper
presenting the algorithm itself or iterative work upon the same. This is not
especially surprising, given that the type of parameters eligible for optimization
depend entirely on the synthesis algorithm itself. In this report, we focus on
examining exemplar based texture optimization.

A parameter suitable for direct optimization is the size of the aforementioned
neighborhoods used during synthesis. Section 4 provides a more detailed ex-
planation to this effect. Briefly, the optimal neighborhood size is the smallest
possible size, while still encompassing all unique structures captured in a tex-
ture. Hong et al. present a novel method with which to estimate texture scale
[13] and apply it to set of highly periodic brodatz textures [8].

2.3 Indirect Parameter Optimization

Similar to direct parameter optimization, to the best of our knowledge, no paper
exists that specifically investigates the impact of varying parameters used during
texture synthesis, for the purposes of making the algorithm fully automatic.



3 Texture Optimization v

However, within the broader spectrum of general computer science research,
automatic parameter tuning based on an algorithms final result is common.

The automatic tuning of parameters with regards to a quality measure is some-
times called a metaheuristic, and is a subfield of stochastic optimization. A
large body of work exists within this field dating back to the early 1950s. Luke
and Talbi each provide a perspective over the current state of these types of
algorithms as well as implementation based examples [19, 25]. Nanono et al.
provide multiple concrete applications of parameter tuning in modern computer
science problems [22].

2.4 Accelerating Texture Synthesis

Because texture synthesis is a computationally demanding task, it is only natural
that research into improving performance or alleviating the calculatory burden
exists. Lefebvre and Hoppe [18] extend Wei and Levoy’s 2D synthesis approach
[28] by parallelizing it and implementing it on modern GPU hardware.

Manke and Wünsche [20] extend Lefebvre and Hoppes approach allowing it
to synthesize solid textures while executing on a modern GPU. Their paper
provides a thorough explanation and a speculative GPU performance forecast,
but their implementation is limited to a software prototype running in C++.

Dong et al. [10] present a novel method that synthesizes solid textures to cover
the surface region of a given mesh. Their approach yields impressive results at
high speeds, but due to their reliance on precomputed seamlessly interconnected
neighborhoods, the algorithm can introduce a bias during synthesis, eliminating
potentially significant features.

Recently, Barnes et al. have presented an algorithm that significantly increases
the speed of finding the best approximate match for a patch in a given texture
[7].

3 Texture Optimization

The synthesis algorithm we test our methods on was originally presented in
Kopf et al.’s paper [14], and more thoroughly detailed in a related research
paper [17]. In this paper we will restrict our explanation of the algorithm to



vi

the portions where we deviate from the aforementioned descriptions, as well as
portions related to the synthesis parameters which we tweak and analyze.

In short, the texture optimization algorithm attempts to minimize an energy
function describing the difference between the input exemplar and the texture
being synthesized. A simplified version of the function detailed by Kopf et al.
is

E(Ns, Ne) =

ns∑
i=1

‖Ns,i −Ne,best‖r. (1)

The input parameters (Ns) and (Ne) represent the texture being synthesized
and the input exemplar respectively. To measure the energy difference between
Ns and Ne, small texture patches (usually 8 by 8 pixels) are extracted and com-
pared. The total number of patches (a.k.a neighborhoods) from Ns is denoted
ns. For each of the neighborhoods extracted from the synthesized texture Ns,i,
its corresponding best match (measured via L2 norm distance) is subtracted
(Ne,best). The sum of differences describe the energy difference between the two
textures. Setting the exponent r = 0.8 in the energy function keeps it more
robust against outliers [14, 15].

The synthesis algorithm progresses through several levels of detail, starting with
a coarse 32x32 resolution synthesis texture, comprised of random samples from
the input exemplar. For each extracted synthesis neighborhood, the approx-
imate best matching neighborhood is found. Finally, every pixel is updated
based on those best matching neighborhoods. The process is comparable to an
expectation maximization algorithm. The best matches are found, the whole
texture is improved, and finally the process repeats itself.

The neighborhoods extracted from the synthesized texture lie on a sparse grid
spaced 2 pixels apart as shown in Figure 1, where as neighborhoods extracted
from an exemplar lie on a densely populated grid. In the dense grid, each pixel
can be thought of as representing a single neighborhood.

Since the exemplar used to synthesize a new texture usually contains color,
each vectorized neighborhood is comprised of 192 values, consisting of three
color channels for each of the 8x8 pixels in the neighborhood. Finding the best
matching exemplar neighborhood for each synthesized neighborhood is a com-
putationally expensive task in such a high dimensional room, so prior to find-
ing matches, the dimensionality of the neighborhoods is reduced using principal
component analysis (PCA) to a state where 95% of their variance is still retained
(σ = 0.95). To further increase the speed of searching for each neighborhoods
nearest neighbor, an approximate nearest neighbor algorithm is utilized from
the ANN Library [21]. It requires a distance parameter ε to be set, which is



3 Texture Optimization vii

Figure 1: Density of extracted neighborhoods in the synthesis texture. Visual-
ized are all the 8x8 neighborhoods which the blue highlighted pixel is a member
of.

usually set to 2 [14], guarenteeing that all found neighborhoods lie no further
than 1 + ε, times the optimal match distance, away.

Once the approximate best neighborhoods have been located, the algorithm em-
ploys a clustering approach proposed by Wexler et al. [30] to reduce the number
of contributing neighborhoods to a single pixel. This speeds up convergence by
removing outliers and constrains the neighborhoods, that each pixel is a part
of, to a group that contribute a similar color.

Additionally, the texture optimization approach employs a histogram weighing
scheme that prunes contributions which overshoot the current amount of color,
in the respective channel, for the pixel being updated. This ensures overall
global correspondence to the input exemplar, while the neighborhood matching
serves to increase local spatial correspondence.

In some cases it is beneficial, and occasionally a requirement, to attach a feature
map (as an additional channel) in order to produce a satisfactory result, when



viii

synthesizing a troublesome texture. The feature map basically assigns a weight
to each pixel, indicating its importance with regards to the textures structure.
This weight can be adjusted as necessary, if the algorithm is having trouble
reproducing the pattern found within the texture.

3.1 Synthesis Parameters

Texture optimization provides multiple adjustable parameters. This section re-
iterates the ones we believe are most significant, along with a brief description.
How each parameter is affected during direct and indirect optimization is ex-
plained in sections 4 and 5, respectively.

• Neighborhood size — The size of the texture patches compared in be-
tween the input exemplars and the texture being synthesized. Kopf et al.
define the default Neighborhood size as 8 by 8 pixel.

• Neighborhood grid density/sparsity — The density/sparsity of neigh-
borhoods extracted from the exemplar and synthesis textures. Kopf et al.
extract neighborhoods from a dense grid on exemplars, and from a sparser
grid (2 pixels apart) on the synthesized texture.

• Neighborhood dimension reduction (σ) — The method and severity
with which the dimensionality, of the vectorized neighborhoods, is reduced.
In the method proposed by Kopf et al., the variance is reduced to 95% by
using PCA.

• Convergence — The method with which convergence of the synthesized
texture is determined. Kopf et al. use a set number of iterations for each
level of detail (Johannes Kopf, personal communication, March 10, 2010).

• ANN Distance (ε) — A parameter defining that the best matching
exemplar neighborhood, found for a given synthesized neighborhood, is
guaranteed to be no further than 1 + ε times the distance to the actual
closest exemplar neighborhood.

• Histogram matching weight adjustment — When a new color is de-
termined for a given synthesis texture pixel, each contributing color is
compared with the already existing color contribution in the whole syn-
thesis texture. If the amount of color in the synthesized texture is higher
than that of the exemplar texture, then the contribution is punished as
detailed by Kopf et al. [14]. This value is further amplified by a static
weight parameter. Setting this parameter value to zero will nullify the
effects of histogram matching completely.



4 Direct Parameter Selection ix

• Clustering algorithm — The clustering algorithm intended to accelerate
convergence and remove outlying contributors. A meanshift algorithm is
employed by Kopf et al. with a number of threshold parameters.

• Feature map channel — The feature map represents an individual
weight parameter for each pixel (or voxel) in the input exemplar(s). The
static weight associated with the feature map can be adjusted as needed
for the synthesis algorithm to converge successfully.

4 Direct Parameter Selection

Most of the parameters associated with the texture optimization algorithm pre-
sented by Kopf et al. [14] affect unique portions of the algorithm itself. We apply
methods specifically aimed at automatically selecting the individual parameters
presented below.

• Neighborhood size — Kopf et al. [14] note that the use of histogram
matching allowed for the use of small neighborhoods (8x8), while still
recreating the features of the original input exemplar. While this is true,
our empirical testing revealed improved results with certain 2D textures
using a larger neighborhood size, as visualized in figure 10.

The optimal neighborhood size is undoubtedly dependent on the textures
used as input. Recreating the features found in these textures, is a question
of scale. A larger neighborhood is more suitable to properly recreate the
features of a texture with a larger scale, where as a smaller neighborhood
is suitable to a texture with a smaller scale, as visualized in figure 2.

• Convergence — As previously mentioned, Kopf et al. use a set number of
iterations for each level of detail (Johannes Kopf, personal communication,
March 10, 2010).

Through empirical testing, we have determined that certain texture will
converge much faster than others during synthesis. An approach mea-
suring convergence would avoid wasting computational power by stopping
the synthesis after an acceptable result has been achieved.

Optimization of the remaining parameters is beyond the scope of this report.



x

Figure 2: An approximation of the ideal neighborhood size given two differently
scaled textures. On the left, the brick wall with the much bigger scale

4.1 Neighborhood size estimation

As previously mentioned in section 2, Hong et al. [13] present a novel method
with which to estimate texture scale, using the following scale descriptor applied
on each neighborhood Ne:

inf
r
D(Ne,r, Nen,r)− αH(Ne,r) + βr(x). (2)

The equation minimizes the energy measured by three terms, using the variables
Ne,r, Nen,r, and r. The current neighborhood with a ”radius” r (height and
width), is denoted Ne,r. It’s surrounding neighbors is denoted Nen,r. The first
term measures differences between the two regions either via Kullback-Leibler
or Wasserstein distance. In this report we focus on the Wasserstein distance, as
it yielded more reliable results during testing. The second term compensates for
comparing homogenous patches, by reducing the energy proportionally to the
amount of entropy measured in the neighborhood patches. Finally, the last term
ensures that the equation favors patches with as small a size as possible. The
weight parameters α and β are set to 0.001 and 0.1, respectively, as suggested
by Hong et al. [13].

We applied Hong et al.s method to one of the brodatz textures [8], as well as
a number of textures used by Kopf et al. [14], visualized in figure 3. Table 1
display the measured mean and median for each of the textures.



4 Direct Parameter Selection xi

(a) (b) (c) (d) (e) (f)

Figure 3: The top row shows the original textures, along with the median
neighborhood estimated from every single pixel as a red box in the texture. The
same neighborhood size is also visualized immediately below the texture. The
bottom row is a scale map representation of each of the textures, obtained by
applying Hong et al.s energy equation 2, where each pixel is given an intensity
matching the estimated best neighborhood size surrounding that pixel. The
more intense the pixel, the larger the estimated neighborhood for that location.

Texture Mean Median
Brodatz (a) 22.3423 21
Brick wall (b) 17.6359 15
Zebra stripe (c) 24.3031 27
Animal Skin (d) 26.5022 27
Big Brick (e) 10.7212 9
Small Brick (f) 17.8322 27

Table 1: The mean and median of the scales estimated for every pixel in figure
3.

The results do not always correlate directly with the size of the structural ele-
ments in the textures. The most striking example of this is the estimation of
scale for the big bricks (e) and the smaller bricks (f). This is likely the cause
of the homogeneous nature of the large gray areas contained within the brick
texture which lead to a high similarity in the first term of equation 2.

Although the method delivers some results similar to our own estimation of
optimal neighborhood size, there are also notable failure cases, such as the big
bricks (e) and the smaller bricks (f).

We consider two alternative methods of estimating texture scale, based on an
analysis of the relationship in between the neighborhoods:



xii

4.1.1 Neighborhood Clustering

Texture Optimization [14] uses clustering as a means to speed up convergence,
by discarding contributions which are not a part of the dominant cluster while
updating a single pixel. As previously shown in figure 1, several neighborhoods
contribute to a single pixel, and mean-shift clustering ensures that only contri-
butions from the main cluster is retained.

This type of clustering approach could also be used as a scale descriptor. By
expressing each neighborhood of a texture as a point in a high dimensional
space, it may be possible to estimate scale based on this distribution. For each
neighborhood size, meanshift clustering is applied to determine the dominant
cluster. The optimal neighborhood size would have the biggest cluster.

There are issues that require further attention while implementing this approach:

• Neighborhood Size — As the size of the neighborhoods increase in an
attempt to find the biggest cluster, so does the number of dimensions
that each neighborhood ”point” lies on. Principal component analysis is
a useful tool in both reducing calculatory complexity as well as limiting
the number of dimensions for each ”point”. However, it would still be
necessary to include a weight parameter for the purposes of counter bal-
ancing this increased difficulty in clustering due to the higher number of
dimensions.

• Meanshift Threshold — The meanshift clustering algorithms works
with thresholding values that would need to be adjusted empirically to
determine an optimal setting for the majority of textures. Since the point
is to automatically estimate parameters, and not replace these with other
parameters, the thresholds should either be established automatically or
perform well for all textures of a given type.

• Mahalanobis distance — The distance between neighborhoods in the
high dimensional space could potentially be better estimated using the
mahalanobis distance, instead of the euclidean distance.

Neighborhood Tree Structure An alternate approach of examining the re-
lationship in between neighborhoods is by building a tree structure representing
nearest neighbors. Starting with a random neighborhood from the input ex-
emplar, we form a new cluster consisting of that one member. Each cluster is
represented by a single neighborhood, i.e. an average of all the existing neighbor-
hoods in that cluster. We then continuously add the remaining neighborhoods



4 Direct Parameter Selection xiii

to the tree structure. If the new neighborhood is within a certain threshold
distance of the representative neighborhood of a cluster, it is added to the same
cluster. Otherwise, it will form its own new unique cluster.

(a) (b)

Figure 4: (a) The ideal tree structure where each new neighborhood is added
to the already existing cluster. (b) The worst case scenario where each neigh-
borhood forms its own cluster.

Figure 4 shows both the ideal, and worst case scenario of the tree structure. As
with the clustering method, there are a few issues that require further attention:

• Cluster Representative Neighborhood — The best method of repre-
senting a cluster should be further investigated. One option would be to
pick the neighborhood closest to all other neighborhoods in the entire clus-
ter. An alternate option would be to simply average all the neighborhoods
in the cluster together and use that as a representative. Although the lat-
ter option would likely cause unwanted blurring and should be carefully
considered.

• Distance Threshold — The optimal threshold for determining if a neigh-
borhood is close enough to a cluster to become a member should be em-
pirically tested.

• Mahalanobis distance — Just like with the neighborhood clustering
algorithm, the mahalanobis distance could also be applied here when in-
troducing new neighborhoods to existing clusters.

4.2 Convergence estimation

As previously noted, Kopf et al. rely on a fixed set of iterations for each level
of detail, during texture synthesis. We experimented with both the L1- and
L2-Norm applied in conjunction with the energy function (in equation 1), as a
useful measurement for synthesis convergence.



xiv

We were unable to achieve acceptable results using a fixed and/or dynamic
threshold. A solution might be using a probabilistic metaheuristic to provide a
good approximation to the global optimum, such as simulated annealing [31].

5 Indirect Parameter Selection

The core of our indirect parameter optimization method is straightforward. We
attempt to establish an objective measurement of texture quality. Assuming
that this objective measurements correctly identifies the best synthesized tex-
ture among several candidates, then determining the optimal parameters for
a specific texture can be solved using a pure brute force method. If we also
assume that the parameters are at least moderately orthogonal, we can ap-
proach the problem in a linear fashion. By only varying a single parameter,
we can determine its optimal setting. Applying our objective measurements
on each synthesized result while varying one parameter, we determine which
setting produces the best result, for that parameter. We continue until we’ve
determined the optimal setting for each parameter.

We break down the indirect method into five separate steps and detail in each
how we mitigate the complexity arguably without reducing the quality of the
results. For the benefit of the reader, we list the steps in an abbreviated form
below:

1. Select parameters to optimize

2. Select similarity measures

3. Determine parameter bounds using similarity measures

4. Evaluate results of varying parameters within bounds using similarity mea-
sures

5. Perform automated texture synthesis

These steps are thoroughly detailed in identically ordered subsections below.

5.1 Tested Synthesis Parameters

Ideally we would like to measure the effects on all parameters involved in the
texture optimization process. However, certain parameters are arguably harder



5 Indirect Parameter Selection xv

to optimize, and the complexity of determining optimal parameters can increase
exponentially the more parameters are involved. Below we detail which param-
eters we vary, and which remain static.

1. Fixed

• Neighborhood Grid Density/Sparsity — Although we firmly be-
lieve that certain textures could easily produce an acceptable result
with a much sparser set of neighborhoods, we’ve chosen to constrain
the complexity of our analysis, and keep the recommended neighbor-
hood sparsity on the synthesized texture as recommended by Kopf
et al.

• Convergence — Similar to Kopf et al. we rely on a fixed set of
iterations per detail scale to achieve a successful synthesis result. We
found that the algorithm almost always converged when using 100,
30, and 10 iterations for the 32, 64, and 128 pixel resolution scale
respectively.

• Feature map — Originally introduced by Wu and Yu [32], feature
maps aid patch-based texture synthesis methods in reproducing the
structure found in the original input exemplar. All original feature
maps require user input and are created artificially. We’ve chosen
to focus on textures that do not require feature maps in order to
produce acceptable results.

• Clustering Algorithm and associated Parameters - Kopf et al.
note in their paper [14] that purely averaging all the contributing
colors for a single pixel might produce blurry results. While this
sometimes occurred during our testing procedure, it is our impression
that blurring, during 2D synthesis, only happened when there was no
way for the algorithm to satisfactorily converge, in a particular region.
Meanshift clustering on the other hand would force convergence and
cause an unsightly seam to appear in its place.

However, we did find that if histogram matching was not applied,
simply averaging all contributors would occasionally cause the syn-
thesis algorithm to yield unsatisfactory results.

We also applied K-Means as an alternate clustering algorithm, and
found that it produced results slightly less favorable when compared
to Meanshift clustering, but had a much faster runtime. Almost com-
parable to simple averaging. Since the best textures were achieved
using straight averaging of all contributors in conjunction with his-
togram matching, we utilize it exclusively during our testing proce-
dure.



xvi

• Histogram Weight Adjustment — Originally intended as a non-
static parameter, testing revealed that the best results were consis-
tently achieved with a fixed value. Since there is no computational
gain from varying the parameter (except for turning it off), we’re
keeping it static. Table 2 notes which settings were tested, as well as
the permanent setting chosen.

2. Variable

• Neighborhood Size — Kopf et al. suggest using 8 by 8 pixel sized
neighborhoods during the synthesis process. While determining the
upper and lower bounds for this parameter we found this neighbor-
hood size to often be the threshold for where a number of textures
started converging properly.

• Neighborhood Dimension Reduction (σ) — Retaining 95% of
the original textures variance is suggested by Kopf et al. and works
well for all tested textures. A further reduction in retained variance
sometimes shows little to no visual artifacts, where as other textures
will immediatly cease to produce an acceptable result.

• ANN Distance (ε) — Kopf et al. suggests setting ε = 2.0 during
synthesis. A higher setting leads to less exact/faster neighborhood
matching, whereas a lower setting will generally be slower and pro-
duce more exact matches. A side-effect of a low setting (2.0) is that
the algorithm occasionally synthesizes a near exact replica of the in-
put exemplar, albeit with a vertical and horizontal offset. An example
of this can be seen in Figure 5.

5.2 Texture Similarity Measurements

Determining the quality of a synthesized texture might seem trivial at first,
since we are so used to comparing and evaluating what we see as humans.
In fact, stating that people are living, breathing pattern recognition machines
wouldn’t be far from the truth. But in addition to a subjective evaluation,
we are interested in obtaining quantifiable objective measurements. Below we
detail which similarity measures we test to help us determine how successful a
synthesized texture is in recapturing the original textures variety and likeness.

• Subjective comparison — While objective measurements aim to auto-
matically quantify our synthesized results, they cannot capture the human
impression given by the resulting texture. What we perceive remains a



5 Indirect Parameter Selection xvii

Figure 5: On the left, the original tomato exemplar used as input. On the
right, is the resulting synthesized 2D texture using the parameters as suggested
by Kopf et al. Notice that the original exemplar has been reproduced in its
entirety with the original edges pointed out by the arrows.

cornerstone of graphics development and as such, the subjective impres-
sion cannot be disregarded. We therefore perform a subjective evaluation
of the results that the synthesis process yields, in addition to the objective
measurements.

• Reverse neighborhood look-up comparison — During the synthesis
process, the approximate best matching exemplar neighborhood is found
for each synthesized neighborhood. Treating each neighborhood as a 192
dimensional vector and calculating the distance using the L2 Norm yields
an objective measurement of how much the textures differ within that
neighborhood region. It seems like an ideal method when applied to all
neighborhoods in order to get a sense of how well the resulting synthesized
texture turned out.

Unfortunately, this is not the case. Matching each synthesized neighbor-
hoods to its best matching exemplar, as done during texture synthesis,
can yield a result indicating high similarity, even if the whole synthesized
texture only resembles a small portion from the input exemplar. Since we
want to punish textures for not making full use of the variance provided
by the input exemplar, we instead match each exemplar neighborhood to
it’s best matching synthesized neighborhood on a dense grid and calculate
the L2 as follows

Diff(Ne, Ns) =

∑ne

i=1(Ne,i −Ns,best)
2

ne
. (3)

The total number of neighborhoods derived from the exemplar texture



xviii

is denoted ne and a single exemplar neighborhood and its best matching
synthesized neighborhood is denoted by Ne,i and Ns,best respectively. Note
the differences between this equation (3), and the equation used during
synthesis (1):

– For each extracted exemplar neighborhood, the best synthesized
neighborhood is found.

– The actual best match is located during comparison (i.e. ε = 0).

– No dimensionality reduction is performed (i.e σ = 1.0).

– Neighborhoods are sized 10x10, and are extracted from a dense grid
on both the synthesized and exemplar texture.

Texture optimization actively minimizes the difference between synthesis
and exemplar neighborhoods, so there exists a direct coupling between the
process of obtaining a synthesized texture and this particular measurement
of its objective quality. We perform the comparison using 10x10 sized
neighborhoods, as opposed to the default 8x8 setting as suggested by Kopf
et al.

Each channel is scaled to fit between 0..1, and the end result is divided by
the number of neighborhoods extracted from the exemplar. The potential
range for this objective measurement therefore spans between 0 and 192.

This approach is similar to the bidirectional similarity measure presented
by Simakov et al. [24].

• Crude Reverse neighborhood look-up comparison — The reverse
neighborhood look-up comparison test (rnlc test) is computationally expen-
sive. It sacrifices no quality, and will give the best indication of whether
the test itself produces viable results. This crude version of the same test
sacrifices some quality in the hopes of achieving comparable results to the
rnlc test, at much faster speeds. Compared to the rnlc test it retains 95%
variance (as opposed to 100%), and locates approximate best matches
(ε = 2.0), similar to the settings used during synthesis.

• Global histogram difference — To ensure a global texture correspon-
dence, we calculate the histogram difference between the input exemplar
and the synthesized result via the following equation:

HistDiff(Te, Ts) =

j∑
c=1

k∑
b=1

‖Te,b,c
ve
− Ts,b,c

vs
‖. (4)

The variable j denotes the number of channels being synthesized, as de-
termined by the input exemplar. All of our exemplars are RGB colored



5 Indirect Parameter Selection xix

and therefore j = 3. The total number of contributing pixels from the ex-
emplar and synthesized texture is denoted by ve and vs respectively. The
number of bins used to compare histograms is denoted k. This similar-
ity measure, like the reverse neighborhood look-up comparison, is coupled
to the synthesis process. Contributing pixels that do not conform to the
exemplars histogram are pruned during synthesis. To minimize the cou-
pling we set k to a maximum of 255 bins, instead of 16 used during actual
synthesis.

If the histograms from the exemplar and the synthesized result are iden-
tical, eqn. 4 will yield a zero sum. The most opposite textures (a white
and a black one) would yield a maximum of j ∗ 2 in difference.

5.3 Determining parameter bounds

As previously mentioned, we attempt to solve the problem of optimizing our
parameters using linear brute force. The approach is simple, yet functional.
However, it is far too computationally expensive to be viable. There are several
parameters involved and some of them have potentially infinite settings. By only
varying our parameters within fixed upper and lower bounds, we can optimize
the approach arguably without losing any significant resulting quality.

When reducing our parameter search space, we use an extended set of textures,
shown in Figure 7. Most textures are from the same set which Kopf et al. [14]
used to produce solid textures with. The remaining few textures originate from
the CGTexture repository [1].

We synthesize results for each permutation of parameter settings to visually
determine the bounds for the parameters (detailed in Section 5.1). In other
words, a single test consists of fixing every parameter to the defaults as defined
by Kopf et al. and varying one parameter within a heuristically determined
range. To avoid outliers we synthesize a minimum of four textures and visually
compare these to the original input texture.

A number of parameters have a natural upper bound where neither quality
nor precision is sacrificed, at the expense of computational complexity. For
example, setting the ANN distance (ε) to 0 ensures that the best matching
neighborhood is always found, or keeping 100% of the variance (σ) during the
principle component analysis leads to no reduction in quality. We define this as
the upper bound for these types of parameters. The lower bound is found by
incrementally sacrificing more and more quality until the synthesis algorithm
only produces indiscriminant noise for the majority of test textures. Figure 6



xx

shows the synthesis results for three different textures retaining a continously
lower amount of variance, while applying PCA. Note that while all textures
degrade in quality, some degrade much faster than others depending on the
complexity of structure found in the original texture.

Figure 6: Synthesized results using three different exemplars. From left to
right, each column shows the end result produced while retaining less variance
(σ).

5.4 Evaluate objective measurement

Once the upper and lower and lower bounds have been determined, we continue
our testing with a smaller set of textures (shown in Figure 7), due to compu-
tational complexity. For each of the four textures, we synthesize a set of 10
textures for each permutation of settings within the bounds determined by the
previous tests. During these tests we apply our objective measurements to each
of the synthesized results to determine how well they reflect the quality of the
texture when compared to the visual impression.



6 Indirect Parameter Selection Results xxi

Figure 7: The fourteen different input exemplars we use to determine the various
bounds of the synthesis parameters. The blue highlighted exemplars on the left
are also used to measure the efficiency of our objective measurements.

Parameter
Preliminary
Test Settings

Upper bound Lower bound

NB Size
2x2, 3x3, ... 15x15,
16x16, 20x20, 30x30

16x16 5x5

Dimension
Reduction (σ)

0.95, 0.90, ... 0.70, 0.65 0.95 0.75

ANN Distance (ε) 1.5, 2, 3, 4, 8, 16, 28 1.5 12

Hist Punishment
0, 0.5, 1, 2, 4, 8, 16,

32, 64, 128, 1000
128.0 128.0

Table 2: The parameters and their settings used during preliminary testing to
determine upper (best quality) and lower bounds (worst quality).

5.5 Automated texture synthesis

Finally, we use the objective measurements to perform a small set of automatic
synthesis runs using the objective measurements as guide for our algorithm to
determine the optimal setting for each parameter.

6 Indirect Parameter Selection Results

Having selected parameters and similarity measures as detailed in Section 5, we
visually determined the upper and lower bounds as listed in Table 2, using the
extended set of textures shown in Figure 7.

After determining these bounds, we proceed to test our similarity measures as
explained in Section 5.4. The similarity measures are tested by completing a



xxii

total of 10 synthesized textures per settings permutation using a reduced set of
textures, as shown in Figure 7. The results indicate that the global histogram
difference measurement does not correlate well with our visual impression of
the quality. It’s not entirely surprising given that it measures global color cor-
respondence and not structural similarity. A concrete example of lacking visual
correlation is shown in Figure 8. Using small neighborhoods (2x2 and 3x3)
during synthesis measure as being better than using larger neighborhoods (4x4,
5x5 and 6x6), when using global histogram difference as a similarity measure.
It’s clear that its due to the green tomato stalks missing from these results.
Using bigger neighborhoods, they reappear and the global histogram difference
measurement confirms that these results are better.

Figure 8: A synthesized result for different sizes of neighborhoods, using the
tomato picture as input exemplar.

Consequently, the global histogram difference measurement cannot be used to
singlehandedly determine if a result turns out well or not. The Reverse neigh-
borhood look-up comparison on the other hand correlates well with our visual
impression of the synthesized results. Figure 9 shows a general tendency of an
improved result as the approximate nearest neighbor distance is reduced, or a
higher variance is retained. It’s worth noting that the brown dirt texture is
the least affected by a reduction in variance, which the results correlate with.
Figure 10 shows the results of applying the optimally detected neighborhood
size along with the default ε = 2.0 and σ = 0.95 settings.

The rnlc test takes near a minute to complete with a mean completion time
of 42.8 seconds and a std. deviation of 26.6 seconds. Fortunately, we found



6 Indirect Parameter Selection Results xxiii

Figure 9: Three plots showing the results of the reverse neighborhood look-up
comparison while varying the parameters specified in Section 5.1. Each plot
shows the average result of 10 tests including std. deviation. The line colors
refer to which texture being synthesized, as detailed in the legend.

that the crude rnlc test performs equally well when looking at each texture
individually. Specifically, the objectively measured results closely resemble those
of the regular rnlc test, except for being consistently better or worse. The mean
completion time for the crude rnlc test is 4.6 seconds with a std. deviation of
1.9 seconds. Approximately 10 times faster.

Treating each parameter as orthogonal and performing a linear search through
the parameter settings space occasionally causes the algorithm to select param-
eters which are not ideal, resulting in a sub optimal synthesized texture. To
mitigate this issue, we’ve chosen an order by which the parameters are tuned,
and once an optimal value for a parameter is found, we retain it when tweaking
the remaining parameter. Figure 11 shows a comparison between a standard
and optimized synthesis result using the four highlighted textures from Figure
7 as input.

The runtime of automatically tuning the parameters is highly dependent on the
complexity of the texture used as an input exemplar. Using the four textures
shown in Figure 11, the whole process took process, including synthesizing the
final result, lasted between one and four hours, depending on the texture.

6.1 Summary

The extensive testing described in the previous sections have resulted in the
development of the following heuristic, for automatically adjusting parameters
of example-based texture synthesis algorithms.

1. Isolate parameters intended for optimization, and use the crude Reverse
neighborhood look-up comparison test, as described in Section 5.2, on a



xxiv

Figure 10: Synthesized results using the zebra (left) and brick (right) textures
as input exemplars. The first/third column show three different results of using
the parameters suggested by Kopf et al. (neighborhoods sized 8x8) and the
second/fourth column shows the results using the objectively measured optimal
neighborhood sizes (16x16 and 12x12). Below each result is the qualitative
measurement calculated via the rnlc test.

wide range of settings to determine the upper and lower bounds for each.
In the case of texture optimization, the determined detailed in Table 2
work well.

2. Apply a metaheuristic, like linear search, and determine the optimal set-
ting using at least 10 measurements via the crude rnlc test. Optimize
parameters in the order of approximate nearest neighbor distance, neigh-
borhood size, and PCA variance retention. Once an optimal parameter
has been determined, retain it while optimizing the remaining parameters.

3. Synthesized texture using the determined optimal settings.



7 Limitations xxv

Figure 11: Comparison of the four sample textures synthesized using automat-
ically detected optimal settings (top row) and standardized settings used by
Kopf et al. (bottom row). The quality as measured by the crude rnlc test is
listed below each result.

7 Limitations

Automatic parameter selection is no small task, and in some ways, this technical
report only scratches the surface. The following section sums up the achieve-
ments of our efforts, while this section details short-comings we have identified
with either method.

7.1 Direct Parameter Selection

Preliminary findings using direct parameter optimization indicate that the work
by Hong et al. [13] produces suboptimal results in certain cases. Although the
work shows promise, we question whether a probability density distribution
is a sufficiently accurate representation of the different neighborhoods when
determining scale. All spatial information is discarded in this representation
which is limiting.

The alternate methods are in the preliminary stages, and therefore not viable
for a proper evaluation of limitations. However, it is clear that both alternatives
have the potential to introduce further parameters into the process, which would
undo the purpose of this research. It is important that these methods either
function well with a set of static parameters, or handle are capable of self-
estimating them.



xxvi

7.2 Indirect Parameter Selection

• Objective Quality Measurement — The crude Reverse neighborhood
look-up comparison generally delivers favorable results. There are however
some failure cases, such as the brown textured result in figure 11 having
a much lower score than the standardized version, despite being more
blurry. Additionally, the measured quality of a texture is not monotone
and contains local minima.

Using our determined upper and lower bounds lessens the risk of the al-
gorithm falling into a local minima, but does not eliminate it entirely. It
is also important to note that multiple measurements are required for the
crude Reverse neighborhood look-up comparison test to deliver a consistent
result. Looking at the results in Figure 9, its clear that the measurements
can deviate considerably, and to compensate we would recommend mea-
suring the result more than ten times. Since the runtime of the algorithm
is already ’high’ and further tests would only exacerbate the situation, it
would be advantageous to apply a more advanced metaheuristic, such as
simulated annealing.

The high number of measurements required for a reliable estimation,
causes the algorithm to run for several hours. Implementing Barnes et
al.s algorithm [7] should cause a considerable speed up overall.

Finally, it would also be advantageous to extend the similarity measure
to incorporate detection for visual elements we find unappealing, such as
blurring or hard edges. In its current state, the Reverse neighborhood look-
up comparison would highly favor a result that is strikingly similar to the
original input exemplar (such as the result shown in Figure 5).

• Parameter Order Bias — Since we’ve selected a fixed order in which we
optimize our chosen parameters, as detailed in Section 6.1, we introduce
a potential bias into the system.

• Global Histogram Difference Measurement — This measurement
has some short comings. One of the most critical ones being, a case where
one neighborhood is just a single shader darker than the neighborhood it is
currently being compared to. Currently, the estimate would rate the two
neighborhoods as very different, although they would optically be quite
similar.

Reducing the number of bins would alleviate the problem. Another solu-
tion would be to apply a histogram less prone to overall shifts in intensity,
such as earth movers distance [23].

• Neighborhood Size — Our objective measurement uses a specific sized
neighborhood and consequently introduces an amount of bias. This bias
could be minimized by expanding the objective quality measure to include



8 Conclusion xxvii

multiple sized neighborhoods, which may be feasible given the computa-
tional optimizations provided by patchmatch [7].

• Quality Vs. Speed — Even with automatic parameter selection, there
is still an implicit trade off between quality and speed. Allowing the user
a single parameter controlling this aspect of the algorithm would be an
improvement on the approach.

• Overall speed — The proposed method is slow when compared to manual
parameter tuning. Apart from using a more advanced metaheuristic to
traverse the search space, it might be possible to tune the parameters
while producing a smaller, and therefore faster, texture patch (instead of
the 128x128 sized result we synthesize currently). The parameters tuned
while producing a smaller texture patch could serve as an initial ’good
guess’. Reducing the amount of information from the input exemplar
could also be achieved by first synthesizing a monochrome version.

8 Conclusion

We’ve presented analyzed and presented both direct and indirect methods for
the purposes of automatic texture synthesis parameter selection. The direct
methods are advantageous as they, by definition, provide a more direct route to
automatically estimating parameters without the need for relying on a similarity
measure, which potentially introduces further bias.

The heuristics developed as part of our indirect approach, combined with an
objective similarity measure is capable of successfully synthesizing a better result
than those using a standard set of parameters. The approach is not strictly
limited to texture optimization (as presented in this paper), but could be applied
to any exemplar-based texture synthesis algorithm.

Neither of the methods are currently without flaws. We identify the most notable
limitations and note upon potential solutions. We believe that methods shows
promise as a viable method for fully automating texture synthesis, and warrant
further research.

9 Future Work

All of the limitations detailed in section 7 are ideal for future improvement, espe-
cially further work on a more accurate similarity measure as it has a significant



xxviii Bibliography

impact on the viability of the indirect parameter selection method.

Increasing the speed of texture synthesis and the associated parameter selec-
tion is also an attractive area for future work. A significant speed up would be
achieved by implementing Barnes et al.’s patchmatch algorithm [7], with a minor
quality loss. Another path of optimization would be to parallelize the complete
algorithm and implement it on a GPU. Similar to the work done by Lefebvre
and Hoppe [18], who extended Wei and Levoy’s 2D synthesis approach [28].
The most computational heavy components of texture optimization are ideally
suited to be parallelized and implemented on a GPU. Traversing a high dimen-
sional search space has already been shown to perform much faster on a GPU
by Garcia et al. [11], and since texture optimization updates each pixel from a
static set of candidate neighborhoods, it could easily be computed using a GPU.
As already stated by Manke and Wünsche [20], implementing histogram match-
ing is currently the biggest issue plaguing a direct implementation of texture
optimization on the GPU. Kopf et al. have already stated that the histogram
must be up to date during the synthesis process. Only updating the histogram
in between iterations causes the method to over/undershoot the intended goal.

A possible solution might be to randomly group pixel updates and update the
histogram periodically during texture synthesis, instead of after every pixel has
been updated.

Acknowledgments

We’d like to thank Johannes Kopf for the past correspondence regarding the
texture optimization algorithm. We would also like to extend our thanks to
Takeo Igarashi and the University of Tokyo for their collaboration during the
creation of this paper. This research was supported in part by the Danish Meat
Research Institute.



Bibliography

[1] Cgtextures. http://www.cgtextures.com/, 2011.

[2] 2textured. http://www.2textured.com/, 2012.

[3] Archive textures. http://archivetextures.net/, 2012.

[4] Grunge textures. http://www.grungetextures.com/, 2012.

[5] Mayang’s free textures version 15. http://mayang.com/textures/, 2012.

[6] Texture king. http://www.textureking.com/, 2012.

[7] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman. Patchmatch:
a randomized correspondence algorithm for structural image editing. In
ACM Transactions on Graphics (TOG), volume 28, page 24. ACM, 2009.

[8] P. Brodatz. Textures: a photographic album for artists and designers, vol-
ume 66. Dover New York, 1966.

[9] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis and
synthesis of texture images. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, pages
361–368, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publish-
ing Co.

[10] Yue Dong, Sylvain Lefebvre, Xin Tong, and George Drettakis. Lazy solid
texture synthesis. In Computer Graphics Forum (Proceedings of the Euro-
graphics Symposium on Rendering), 2008.

http://www.cgtextures.com/
http://www.2textured.com/
http://archivetextures.net/
http://www.grungetextures.com/
http://mayang.com/textures/
http://www.textureking.com/


xxx BIBLIOGRAPHY

[11] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. k-
nearest neighbor search: fast GPU-based implementations and application
to high-dimensional feature matching. In IEEE International Conference
on Image Processing (ICIP), Hong Kong, China, September 2010.

[12] David J. Heeger and James R. Bergen. Pyramid-based texture analy-
sis/synthesis. In SIGGRAPH ’95: Proceedings of the 22nd annual con-
ference on Computer graphics and interactive techniques, pages 229–238,
New York, NY, USA, 1995. ACM.

[13] B.W. Hong, S. Soatto, K. Ni, and T. Chan. The scale of a texture and its
application to segmentation. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[14] Johannes Kopf, Chi-Wing Fu, Daniel Cohen-Or, Oliver Deussen, Dani
Lischinski, and Tien-Tsin Wong. Solid texture synthesis from 2d exem-
plars. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2007),
26(3):2:1–2:9, 2007.

[15] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture
optimization for example-based synthesis. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Papers, pages 795–802, New York, NY, USA, 2005. ACM.

[16] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron Bobick.
Graphcut textures: image and video synthesis using graph cuts. ACM
Trans. Graph., 22:277–286, July 2003.

[17] Lasse Laursen, Bjarne Kjær Ersbøll, and Jakob Andreas Bærentzen.
Anisotropic 3d texture synthesis with application to volume rendering.
In Proceedings of WSCG’2011 (19-th International Conference in Central
Europe on Computer Graphics, Visualization and Computer Vision’2011),
2011.

[18] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis.
ACM TRANSACTIONS ON GRAPHICS, pages 777–786, 2005.

[19] Sean Luke. Essentials of Metaheuristics. Lulu, 2009. Available for free at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[20] Felix Manke and Burkhard Wunsche. Fast three-dimensional texture syn-
thesis. New Zealand Computer Science Research Student Conference, 2008.

[21] David M. Mount and Sunil Arya. Ann: A library for approximate nearest
neighbor searching. http://www.cs.umd.edu/ mount/ANN/, 2010.

[22] Ken Naono, Keita Teranishi, John Cavazos, and Reiji Suda, editors.
Software Automatic Tuning: From Concepts to State-of-the-Art Results.
Springer, 1st edition. edition, 9 2010.



BIBLIOGRAPHY xxxi

[23] Y. Rubner, C. Tomasi, and L.J. Guibas. A metric for distributions with
applications to image databases. In Computer Vision, 1998. Sixth Inter-
national Conference on, pages 59–66. IEEE, 1998.

[24] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual
data using bidirectional similarity. In Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[25] El-Ghazali Talbi. Metaheuristics: From Design to Implementation (Wiley
Series on Parallel and Distributed Computing). Wiley, 6 2009.

[26] Li-Yi Wei, Jianwei Han, Kun Zhou, Hujun Bao, Baining Guo, and Heung-
Yeung Shum. Inverse texture synthesis. ACM Trans. Graph., 27:52:1–52:9,
August 2008.

[27] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the
art in example-based texture synthesis. In Eurographics 2009, State of the
Art Report, EG-STAR. Eurographics Association, 2009.

[28] Li-Yi Wei and Marc Levoy. Order-independent texture synthesis. Earlier
version is Stanford University Computer Science TR-2002-01.

[29] Li-Yi Wei and Marc Levoy. Fast texture synthesis using tree-structured
vector quantization. In SIGGRAPH ’00: Proceedings of the 27th annual
conference on Computer graphics and interactive techniques, pages 479–
488, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[30] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion
of video. IEEE Trans. Pattern Anal. Mach. Intell., 29(3):463–476, 2007.

[31] Wikipedia. Simulated annealing — Wikipedia, the free encyclopedia, 2012.
[Online; accessed 18-April-2012].

[32] Qing Wu and Yizhou Yu. Feature matching and deformation for texture
synthesis. ACM Trans. Graph., 23:364–367, August 2004.


	Introduction
	Related Work
	Texture Optimization
	Direct Parameter Selection
	Indirect Parameter Selection
	Indirect Parameter Selection Results
	Limitations
	Conclusion
	Future Work

