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Abstract

When inspecting food quality, CT Scanning is among the primary tools used to gain
insight. It provides valuable volumetric data using a process, which leaves the product un-
spoiled and untouched. However, volumetric data is merely a measure of density and there-
fore contains no appearance information (such as color, translucency, reflective properties).
One way of reintroducing this lost information back to the volume data is to synthesize an
appropriate texture and apply this to the volume data.

A recent method within the field of texture synthesis is called Texture Optimization pre-
sented by Kopf et al. in 2007. This method accepts a number of 2D input exemplars, from
which it generates a solid texture volume. The volume is iteratively improved via an ex-
pectation maximization algorithm. The bottleneck of Texture Optimization occurs during a
nearest neighbor search, between texture patches from the 2D input exemplars and the gen-
erated texture volume. We examine the current procedures for minimizing the bottleneck
and present a novel approach which increases the speed of the synthesis algorithm while
minimizing loss of quality.

The nearest neighbor search is performed in a high dimensional space. Applying a prin-
cipal component analysis on the texture patches originating from the synthesized solid ac-
celerates the process. These patches are then reduced in dimensionality until ”only” 95%
of their original variance remains. This usually results in a dimension reduction from 192
to about 60-80. The reduction in dimensionality speeds up the convergence of the Texture
Optimization method considerably.

We examine the impacts of reducing the dimensionality further by tweaking the parame-
ters as well as introducing an alternative method to reducing the dimensionality. Additionally,
we study the possibility of selecting only a subsample of the neighborhoods available from
the input exemplar without significantly impacting the overall synthesis quality.
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1 Introduction
Adding appearance information to volumetric data is commonplace. In most cases this is achieved via
transfer functions [HKRs+06], but a viable alternative is to use solid textures [LEB11]. Solid textures and
volume data are almost a perfect match, since they occupy the same dimensions, making the application
straightforward. One drawback of solid textures is that they are not easily acquired. Therefore, there
exists a large body of research concerned with synthesizing solid textures from existing 2D textures, also
called input exemplars. A recent method is called Texture Optimization[KFCO+07]. In brief terms, this
method starts with synthesizing a solid volume based on random samples from the input exemplars. The
volume is then iteratively improved on a rough scale using an Expectation Maximization method. Once
it has converged, the solid texture is scaled up and iteratively improved until convergence is once again
reached. Eventually the synthesis process is complete at the highest resolution of 128x128x128 voxels.
Higher resolution synthesis is not performed due to the computational complexity involved.

Local correlation between the synthesized solid and the input exemplars is achieved by comparing
small 8 by 8 texture patches, from here on also referred to as neighborhoods. These neighborhoods are
essentially vectors in a 192 dimensional space, due to the three-color channels. For each neighborhood
in the synthesized solid, the best match is found among the neighborhoods from input exemplars. Figure
1 shows how a number of neighborhoods from the synthesized solid are matched to neighborhoods orig-
inating from the input exemplar. This is basically a nearest neighbor search in a high dimensional space.
This search is the bottleneck for the entire Texture Optimization method. To lessen the impact of this ex-
pensive search, a principle component analysis is performed on the input exemplars. The neighborhoods
are then projected into a space where 95% of the variance is retained. This usually results in a dimension
reduction from 192 to around 60-80 dimensions.

Figure 1: Neighborhoods on axis-aligned planes related to a single voxel are found. These neighborhoods
are then compared to all existing neighborhoods in an input exemplar. For each, the optimal match is
found.

We intend to show how optimizing the process in two different ways can further reduce this bot-
tleneck. First, we examine whether we can further reduce the dimensionality by applying an alternative
dimension reduction method as well as using fewer dimensions in the PCA. Second, we attempt to reduce
the number of contributing neighborhoods based on a similarity measure. Eliminating similar neighbor-
hoods from the pool provided by the input exemplar should speed up the synthesis algorithm while only
slightly diminishing the texture quality.
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2 Preliminary results
Our preliminary research has been performed on the input exemplars shown in figure 2, which originate
from pig muscle.

Figure 2: Input Exemplars used to obtain preliminary results.

Figure 3 shows results from the original texture synthesis algorithm, which uses a PCA reducing the
number of dimensions to 80 while 95% of the variance is retained.

Figure 3: The true and estimated patches using a PCA dimension reduction of size 80. The last col-
umn shows the residual between the true and estimated patch and the associated number gives the SSE
of the reconstruction. The rows, from top to bottom, represent the best, the 2nd worst and the worst
reconstructions.

We apply Non-Negative Matrix Factorization (NMF), which is an alternative decomposition method
[LS99]. NMF is known by learning by parts and instead of finding components, which describe maximal
variance in data like PCA; it finds components, which describes localized features in data. Figure 4 shows
the results from applying the NMF to our input exemplars.
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Figure 4: The true and estimated patches using NMF decompostion with a dimensionality of 15. The
last column shows the residual between the true and estimated patch and the associated number gives the
SSE of the reconstruction. The rows, from top to bottom, represent the best, the 2nd worst and the worst
reconstructions.

The NMF reduces the dimensionality to 15, while still retaining similarity, even among the worst
estimated neighborhoods.

Figure 5 shows the results of reducing the dimensionality to 15 via PCA, which contains 83% of
the variance. Although the sum squared error is better when compared to NMF, the visual result is not
noticeably improved. It is difficult at this point to ascertain the global impact of these changes to the final
result of the texture synthesis process. The lack of perceptible difference warrants further study.

Figure 6 shows a comparison of a subset of neighborhoods extracted from the input exemplar, after a
PCA dimension reduction to 80 dimensions. We measure Euclidian distance between the neighborhoods.
At a Euclidian distance of 100, shown in the bottom right of figure 6, the difference between two random
patches is visible, yet small. Neighborhoods with an even shorter distance will look increasingly similar.
This supports our hypothesis that a number of neighborhoods are redundant and can be discarded with
minimal impact to the final synthesized result.

3 Future work
Achieving the optimal balance between speed and quality will require further study. We have briefly
covered the main areas within which we believe we can improve the Texture Optimization algorithm.
By comparing original results from the method with results produced by our own modified methods, we
should be able to achieve considerable increases in speed with hopefully minimal impact to the image
quality.
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Figure 5: The true and estimated patches using PCA decompostion with a dimensionality of 15. The
last column shows the residual between the true and estimated patch and the associated number gives the
SSE of the reconstruction. The rows, from top to bottom, represent the best, the 2nd worst and the worst
reconstructions.

Figure 6: Left: Histogram of the Euclidian distances between the dimension reduced patches using a
PCA reduction of 80 dimension. Only a subset of the patches were included in this analysis. Right:
Examples of Euclidian distances (d), and an illustration of the corresponding two estimated patches, plus
the residual between the two estimated patches and the SSE between the two estimated patches.
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