
Anisotropic 3D texture synthesis with application to
volume rendering

Lasse Farnung Laursen

Technical University of Denmark
Richard Petersens Plads

Building 321
 DK-2800 Kgs. Lyngby

lfla@imm.dtu.dk

Bjarne Kjær Ersbøll

Technical University of Denmark
Richard Petersens Plads

Building 305
DK-2800 Kgs. Lyngby

be@imm.dtu.dk

Jakob Andreas Bærentzen

Technical University of Denmark
Richard Petersens Plads

Building 321
DK-2800 Kgs. Lyngby

jab@imm.dtu.dk

ABSTRACT
We present a novel approach to improving volume rendering by using synthesized textures in combination with

a custom transfer function.

First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to

the synthesis method, we acquire high quality images using a 12.1 megapixel camera.

Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and

opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add

texture to the volume rendered images. This method is applied to a high quality visualization of a pig carcass,

where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures.

Keywords
Volumetric Rendering, Texture Synthesis, Transfer function.

1. INTRODUCTION
The use of volumetric data is becoming increasingly

common within research fields such as medical

visualization, food production and graphics. This

data is also ever increasing in size as the scanners

providing the data, e.g. CT, MRI, and ultrasound

scanners, are improving and thus able to provide

higher resolutions. Increased precision and more

detail is a natural evolution as having too much

information, is somewhat of a luxury problem.

When concerned with rendering volumetric data in

real time, two issues persist. Firstly, the features that

we would like to visualize might be on a finer scale

than the voxels, despite the ever increasing amount of

volume data. In our case, we visualize pig meat, and

the variation in the texture of pig meat is on a finer

scale than the resolution of our CT scan. Moreover,

the voxels in our CT scanned data are stretched ten

times along one axis. This problem is compounded

by a second issue which is the fact that the CT

intensities represent material density, which is not

directly related to the appearance of the underlying

tissue.

We present a novel approach which aims to alleviate

both issues. With prior knowledge about the type of

volumetric data we wish to visualize, we synthesize

an anisotropic 3D texture which is applied to the

volume data via a customized transfer function.

Using this transfer function, we map the CT

intensities to a high resolution solid pig meat texture

which gives a qualitatively far better representation

of the meat than any single color. Moreover, the solid

texture texels are not stretched.

Solid textures are an ideal fit when rendering

volumetric data. In almost all cases, there is an

interest in rendering what is beneath the surface or

subdividing the data to expose some deeper layer.

Since a solid texture shares the same number of

dimensions as common volume data, its application

is relatively straightforward.

2. Related Work
The focus of this paper can be divided into solid

texture synthesis, and the application thereof in

volumetric rendering.

Solid Texture Synthesis
Considerable work has been done within the field of

texture synthesis, from parametric methods [HB95]

to non-parametric methods [DB97, Har01], as well as

alternative approaches [WL00]. Most texture

synthesis algorithms use a sample texture as input,

referred to from here on as exemplar. This exemplar

forms the basis for either a parametric model, which

synthesizes a new texture based on modeled

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

parameters, or for a non-parametric algorithm, which

reuses elements from the exemplar and recombines

these to create a new, yet similar, texture.

Solid texture synthesis has been pioneered and

expanded upon within the past two decades. Several

methods, both parametric [GD95] and non-

parametric [Wei02], as well as alternate approaches

[JDR04], have been presented.

A recent texture synthesis method, which we use to

create our anisotropic textures, is called texture

optimization [KEBK05, KFCO+07]. This method

iteratively improves the texture as a whole, making

each modification smaller and more refined.

Volumetric Transfer Function
Volume rendering [DCH88] has come a long way.

Most applications today make use of graphics

hardware to improve performance [CN94]. The field

has seen a dramatic increase of research into all kinds

of visualization techniques involving volumetric

data. Most volumetric data originates from either

computed tomography or magnetic resonance scans,

which do not yield a direct mapping to appearance

attributes (i.e. color and texture of the scanned

tissue). An obvious field of research is therefore to

provide proper color and texture to this otherwise

appearance deficient data. The visible human project

is one such example, where a male and female body

has been scanned, and subsequently cut and

photographed to obtain the correlation between

density and appearance. One method with which to

color the data, is the use of a transfer function

[HKRs+06a].

Many methods for creating transfer functions exist.

From a simple pre-defined function capable of

transforming between two number domains, to a user

defined transfer function allowing for iterative

refinement through user input [CS07]. In most cases,

user input is desirable since the transfer function is

often used as a tool to highlight or hide specific

features in the volume data.

Other approaches include Dong and Clapworthy

[DC05], who use 2D input exemplars to apply and

synthesize texture to a volumetric volume

simultaneously. By analyzing the orientation of each

voxel in the volume data a patch based synthesis

strategy is applied to apply and expand the 2D

exemplar to the volume.

Lu et al. [LEQ+07] expand upon an existing 2D

synthesis algorithm to create a flexible system for

volume illustration. By extending the concept of

Wang Cubes into the third dimension Lu et al. create

a tileable solid texture set.

Manke and Wünsche [MW09] provide a formal

framework for applying solid textures to a volume,

similar to the work in this paper. They also present

methods for dealing with discontinuous mapping. In

contrast to this paper, however they do not touch

upon the scaling or periodicity issues of applying a

repeating solid textures to a volume.

In this paper, we use a simple, piecewise constant

transfer function which maps voxel intensities to

entire texture volumes, similar to Manke and

Wünsche [MW09]. Subsequently, the color values at

the given position in the volume are obtained by

lookup in these texture volumes. The voxel density is

used as an indicator for opacity. The textures are

applied in a multi-scale fashion to minimize the

periodicity, which is further described in Section 6.

3. Overview
It has been our overall goal is to improve the

visualization of CT scanned data. By applying a solid

texture to the data via a transfer function, we are able

to increase the visual detail at a minor cost to the

computations required.

We employ the texture optimization method

presented by Kopf et al. [KFCO+07], to synthesize

our anisotropic textures. There is a large overlap with

our description and [KFCO+07]. This is partly to

highlight particular details of our implementation and

partly to make the present paper more self-contained.

Unfortunately, the aforementioned texture synthesis

method does a poor job of synthesizing textures with

only low frequency features. This leads to some

muscle textures being comparable to base noise

textures with similar colors.

Due to computational limitations, synthesizing solids

larger than 128x128x128 is not feasible. This

presents a number of scale and periodicity issues

which we explore in sections 6 and 7. In short, we

apply the synthesized texture in multiple scales to

allow for fine and rough effects. We still make use of

the CT data to add additional rough detail.

The results of these iterative improvements are

compared and discussed, also in section 7.

4. Solid Texture Synthesis
As previously explained, texture optimization is an

iterative method where the difference between the

input exemplar and the synthesized solid is

minimized. The difference is measured by a global

texture energy function which compares fixed sized

8x8 2D neighborhoods. For now, let us assume that

each voxel/texel defines its own neighborhood. We

define a simplified global texture energy function,

similar to the one by Kopf et al. [KFCO+07].

Equation 1: Global Energy Function.

The neighborhoods in the synthesized solid and input

exemplar(s), are denoted by and respectively.

The total number of number of neighborhoods from

the synthesized solid () is denoted . The th

vectorized neighborhood in the solid is denoted ,

and its closest match (in norm) in the input

exemplar(s), is denoted by . The exponent

 makes the function more robust against

outliers [KFCO+07, KEBK05].

Initially, the synthesized volume is comprised of

randomly selected texels from the input exemplar.

The volume is then iteratively improved to resemble

the input exemplar(s). The process is comparable to

an expectation maximization algorithm. We first find

the “best looking” parameters, then we optimize

based on those findings, and repeat the process.

Figure 1: Exemplars on the three planes

orthogonal to the main axes.

As mentioned previously, comparing the synthesized

texture to the input exemplar(s) is done by comparing

fixed sized 8x8 neighborhoods. These neighborhoods

are extracted from both the synthesized volume and

the input exemplar(s). However, there is not – as

previously mentioned - one neighborhood assigned to

each voxel. Rather, each voxel is indirectly related to

the neighborhoods that includes it.

Figure 2: Density of neighborhoods on both

exemplar and synthesis textures.

On the input exemplars, these neighborhoods lie on a

densely populated grid, since we want to use all the

available information provided to us, about the

texture to be synthesized. In the synthesized volume

the neighborhoods lie on a sparse grid (spaced 1

voxel apart like Kopf et al. [KFCO+07]), and only on

planes orthogonal to the three main axes of our

coordinate system, as shown in Figure 1. This serves

to reduce computation time and avoid re-sampling

issues.

Figure 2 visualizes the sparse grid upon which the

synthesized neighborhoods lie. A given voxel –

highlighted in blue - is a member of 16 on any given

plane, due to the sythesized solids toroidal boundary

conditions.

Once the all the neighborhoods have been extracted,

the “best looking” parameters are then found by

locating the least different neighborhood in the input

exemplar(s), for each neighborhood in the

synthesized volume. Once found, each voxel is

assigned a new value based on texels in the

corresponding best matches of the neighborhoods

overlapping that voxel. Essentially averaging all the

contributions to make a new color:

Equation 2: Voxel color calculation.

The new color assigned to the voxel in the

synthesized solid, denoted , is an average of

several existing color values. The above equation

states that for each neighborhood the voxel is a

member of, we find the matching texel , in the best

matching neighborhood . This sum is finally

divided by , which denotes the number of

neighborhoods the voxel is a part of.

Figure 3: Neighborhoods on the three planes

orthogonal to the main axes matched to input

exemplar neighborhoods.

Figure 3 visualizes equation 2 in practice. In our

sparsely populated grid on the synthesized solid, a

single voxel is member of 16 neighborhoods on a

single plane orthogonal to a main axis. Since we have

three such planes, visualized as blue, yellow, and

green in figure 3, the voxel is a member of a total of

48 neighborhoods. Each of these neighborhoods has

a corresponding match in an exemplar. The texel

overlapping the same position in each of these

neighborhoods contributes to the sum, which is

eventually divided by the total number of

contributions (in this case 48), yielding the new

color.

The optimization algorithm is actually performed on

multiple levels of differing quality. The synthesized

solid initially consists of 32x32x32 voxels, and input

exemplar(s) are scaled to 32x32 respectively. Once

the synthesis process reaches certain conditions,

outlined in section 4.5, the volume is scaled up to

64x64x64 using trilinear interpolation. Due to

computational restrictions of performing a nearest

neighbor search in a high dimensional space, the

synthesis is only performed up to a resolution of

128x128x128.

Approximate Nearest Neighbor
In a standard-RGB texture, an 8x8 neighborhood

consists of 192 values. Finding the nearest neighbor

in a 192 dimensional space is a computationally

expensive operation.

We apply the same optimizations as Kopf et al.

[KFCO+07] to reduce the computation complexity. A

principal component analysis is performed on the

neighborhood vectors from the exemplar(s). By only

preserving the coefficients required to maintain 95%

of the variance, we can typically reduce the number

of dimensions by half, or more.

We also employ the ANN: Approximate nearest

neighbor library [MA10]. The library accepts a value

 , and returns an approximate nearest neighbor

guaranteed to be at most away from the true

nearest neighbor. We employ as dictated by

Kopf et al. [KFCO+07].

Weighting Scheme
As previously mentioned in section 4, using an

exponent of 0.8 in equation 1, causes it to be more

robust against outliers. However, minimizing the

norm is more cumbersome than minimizing the

norm. So instead we introduce a weight into the

equation and rewrite the terms of the energy function

(1) to the following (similar to Kopf et al.

[KFCO+07]):

Equation 3: Energy function term re-write.

where

. This leads to

the following quadratic formula which we seek to

minimize:

Equation 4: Improved energy function.

The weight parameter makes sure that the

exemplar neighborhood closest to a given

synthesized neighborhood, carries the most weight.

Instead of a straight average as applied in equation 2,

we are now calculating a weighted average which

leads to the following formula when calculating a

new voxel value:

Equation 5: Weighted voxel color calculation.

Instead of dividing the sum by the total number of

contributors, we now divide by the total amount of

weight distributed among the contributions.

Meanshift
Although adjusting each contributing texel with a

weight parameter yields better results and speeds up

convergence, there are still numerous textures which

fail to produces acceptable results. One persisting

issue is that outliers still contribute to the final result,

even if their contribution is minimal.

In order to minimize contribution from outliers, Kopf

et al. [KFCO+07] employ a clustering approach,

proposed by Wexler et al. [WSI07]. In short, every

contributing texel is considered to be a cluster. These

clusters are then merged depending whether their

center is within a distance of to one another. If any

new clusters emerge, the process of searching and

merging is repeated, until no further clusters form.

Only texels from the dominant cluster end up

contributing to the new voxel value.

The threshold is decreased with each iteration over

the course of a single resolution level convergence.

Once the synthesized texture converges on a single

level, the thresholding value is reset. We found that

setting , , and worked well

in many cases, on the lowest, medium, and highest

resolution level, respectively.

Histogram Matching
The previously mentioned modifications to the

original synthesis method, speeds up convergence

and minimizes the impact of outliers. However, the

algorithm will occasionally converge at certain

minima, which fail to make full use of the

exemplar(s) details.

Kopf et al. [KFCO+07] address this issue by utilizing

histogram matching. The weight each texel carries is

further adjusted, based upon whether its contribution

will increase, or decrease, the similarity between the

histograms of the input exemplar, and the

synthesized solid. Practically, they achieve this by

keeping track of a 16-bin histogram for each of the

input exemplars‟ channels. Usually, this is just the

red, green, and blue channel. Kopf et al. also note the

importance of keeping this histogram up to date

during each “maximization” phase. Otherwise, the

method will just overshoot the intended histogram

and overcompensate in the following iteration.

When synthesizing anisotropic textures we maintain

one histogram per input exemplar. We let each

contributing texel pull in the direction of its

exemplars histogram, which seems to work well. Just

like Kopf et al. we also traverse the voxels in a

random order, to avoid any directional bias.

Histogram matching is an integral part of creating the

best results possible via texture optimization. It

makes the algorithm take global statistics into

consideration while still allowing for the use of a

small neighborhood window. Histogram matching

also speeds up convergence significantly.

Synthesis Convergence Conditions
We found that a fixed number of iterations yielded

the best result with most textures (J. Kopf, pers.

comm.). Iterating 100 times on the lowest resolution,

20 on the next level, and 10 on the highest level,

worked well with most textures.

5. Exemplar Acquisition
As with every other texture synthesis method, we

require exemplars of the texture we intend to

synthesize. Our exemplars were obtained using a

12.1 megapixel camera, Canon IXUS 120IS, in a

well lit setting. Originally, we intended to obtain

samples using a multispectral color and texture

measurement vision system. This system measures

up to 20 different bands across the visible and non-

visible spectrum. These precise measurements are

then combined to a final standard-RGB image.

However, most household cameras actually yield

more vivid and realistic colors as each sensor

integrates a wider range of the spectrum than the

more precise instrument.

6. Rendering
To visualize the volumetric data, a simple ray casting

technique [HKRs+06b] is applied using the GPU. To

obtain the start and end point for each ray, two

rendering passes are performed of a cube showing

the front- and backface respectively. The cube acts as

our rendering proxy and yields the start and end

position for each ray, which is recorded into a buffer

using the fragment shader.

An additional rendering pass is then performed where

the fragment shader traces a ray through the space

enclosed by the cube. The ray is traced with 0.001

increments in relation to the unit cube around the

volume, and accumulates more color and opacity as it

traverses the volume. The “ray-color” starts off black

and completely transparent. For each step through the

volume, the current density is classified as air, skin,

fat, meat, or bone, according to the Hounsfield scale

[Sev04]. Its contribution to the overall “ray-color” as

well as “remaining transparency” is calculated by the

following formulas:

Equation 6: Color and transparency contribution

per ray-step.

The contribution added to the existing color and

transparency value of the ray is denoted as . The

amount of contributing light via simple lambertian

shading [HKRs+06c], is denoted . The contributing

color and transparency from the classified density is

denoted and respectively. When “ray-color”

is completely opaque, the ray traversal is stopped.

Figure 4: Three synthesized solids and their two

input exemplars (pig muscle tissue). The left and

middle synthesis’ yield an unsatisfactory result.

Setting in Equation 6 to the color from the

appropriately scaled solid texture produces a result

with significant periodicity at high magnification and

almost uniform color at low magnification (because

of mipmapping). This can be seen in Figure 5, in the

top and bottom left. To ameliorate these issues, we

combine the texture at three levels of scaling, and

 is computed as illustrated in the next equation.

Figure 5: Three differently scaled muscle textures combined to create the final result. The top and middle

segment show zoomed in areas to show finer detail.

Figure 6: On the top, volumetric data from the pig carcass, visualized without enhanced graphics. The

colors for the meat, bone, and fat tissue are the average color values of the textures applied on the right.

On the bottom, volumetric data from the pig carcass, visualized with enhanced graphics. The highlighted

sections in yellow indicate the zoomed section displayed on the right.

Equation 7: Density case color contribution.

The color contribution consists of three differently

scaled textures
 and an associated weight factor

 . For each tissue, the scales differ approximately

a factor of 10, and the weight factor is always highest

for the macro texture (approximately 3 to 1). Density

is contributed to the final color value via .

The value represents a scaled measure of the

density at that point in the volumetric data, and

 denotes the density threshold of the

contributing tissue. The result of combining the three

synthesized muscle textures, along with the density

modifier, is visualized in Figure 5.

An exception to the calculation outlined in Equation

7 is the skin color contribution which yields a

constant average color of sampled pig skin,

permeated by simplex noise [Per01] to give some

variation to the surface.

The transparency value for either fat, muscle or bone

is calculated via the following formula:

Skin has a constant translucency of 0.75, and air is

completely transparent.

7. Results
We implemented the method described in this paper

entirely in C++. The time required to generate a

 solid depends primarily on the size and richness

of the input exemplars. On an Alienware m17x

model (using only a single core) the synthesis of our

three tissue types would usually converge after

approximately 2-3 hours. It was our experience that

the algorithm generated the best textures when only

forcing two of the three dimensions to conform to

input exemplars, regardless of whether isotropic, or

anisotropic synthesis.

As previously mentioned in section 3, the synthesis

algorithm has trouble synthesizing 3D textures based

on input exemplars with primarily low frequency

features. The two initial attempts in figure 4 show

how the final synthesized solid ends up looking

almost nothing like the original two textures used as

input. The third synthesized solid is much more

promising.

A question of scale arises when choosing how much

surface a single exemplar should cover. To ensure we

acquired as homogenous a sample as possible, and

preserve detail, we chose to use exemplars covering a

small area of approximately 2x2 cm.

As previously mentioned in section 6, the final color

value of a voxel is modified by a simple mapping of

the current density. The density modifier allows for a

number of low frequency details to show, as is

visualized in Figure 7.

Figure 7: Two hams, with and without density

value modification. The highlighted sections in

yellow indicate the zoomed section displayed on

the bottom.

The final result of the visualized volume data with all

the aforementioned techniques applied is shown in

Figure 6.

Figure 8: The volume data rotation pattern of the

preliminary benchmark. Unenhanced pig

visualized.

We perform a preliminary benchmark of the applied

synthetic textures by rotating the volume one

complete turn, around the y-axis, as seen in Figure 8.

 Std. Graphics Enh. Graphics

Min. Fps 53 47

Max. Fps 118 102

Avrg. Fps 76.817 61.117

Table 1: Preliminary performance measurements.

The application of the synthesized textures only

requires three additional texture lookups per

visualized voxel. Since texture lookups are

implemented on the hardware level, it comes as no

surprise that the performance loss is minimal, as seen

in Table 1. However, creating the synthesized

textures is another matter. Due to the complexity of a

nearest neighbor search in a high dimensional space,

performing the synthesis in real-time is an

impossibility.

8. Conclusions and Future Work
We have utilized an existing texture synthesis

approach to produce three anisotropic textures, which

were then applied to volumetric data via a custom

transfer function, improving upon the original

colorless data.

The technique can potentially be applied to any type

of volumetric data and is not necessarily constricted

to organic tissue.

Although the result has improved significantly, there

is still room for improvement.

Figure 9: A close up of the visualized volumetric

data showing computed tomography artifacts.

Our light model is simplistic. Better modeling of how

light and meat interact would be an obvious next step

since, recently, techniques for real-time interactive

computation of translucent surfaces have started to

appear, e.g. [WWH+10].

As mentioned in the previous section, we modify the

final color slightly via the density of the volumetric

data. While this adds significant detail to the final

visualization, it also introduces a number of artifacts

introduced by the scanning method. Figure 9 shows

how the data acquisition rays from computed

tomography leaves visible artifacts in the volume

data.

Due to time required to perform a complete solid

texture synthesis it could be advantageous to create a

larger pre-computed library of multiple tissue types

(in addition to the three described in this paper).

Theoretically, it would also be possible to synthesize

in-between textures by using an input exemplar from

each tissue type, to smooth the transition between

them. A few practical experiments are required to see

how convincing the resulting solid textures would be.

It would also be interesting to implement and

compare the technique demonstrated by Lu et al.

[LEQ+07]. Using their extension to the wang cube

model is also a way of avoiding periodicity in the

applied texture.

9. ACKNOWLEDGMENTS
We would like to thank Johannes Kopf for the

invaluable correspondence during the development of

this paper. We also extend our thanks to the

anonymous reviewers in helping us improve on the

paper. This research was supported in part by the

Danish Meat Research Institute. The CT scan of the

pig carcass was also kindly provided by the Danish

Meat Research Institute.

10. REFERENCES
 [CJ06] Thierry Carrard and Manuel Juliachs,

Bandwidth-efficient Hardware-Based Volume

Rendering for Large Unstructured Meshes,

WSCG 2006, 14th International Conference in

Central Europe on Computer Graphics,

Visualization and Computer Vision, Plzen,

CZECH REPUBLIC, JAN 30-FEB 03, 2006, pp.

169–176 (English).

[CN94] Timothy J. Cullip and Ulrich Neumann,

Accelerating volume reconstruction with 3d

texture hardware, Tech. report, Chapel Hill, NC,

USA, 1994.

 [CS07] Amit Chourasia and Juergen R. Schulze,

Data Centric Transfer Functions for High

Dynamic Range Volume Data, WSCG 2007, 15th

International Conference in Central Europe on

Computer Graphics, Visualization and Computer

Vision, Plzen, CZECH REPUBLIC, JAN 29-FEB

01, 2007, pp. 9–15 (English).

[DB97] Jeremy S. De Bonet, Multiresolution

sampling procedure for analysis and synthesis of

texture images, SIGGRAPH ‟97: Proceedings of

the 24th annual conference on Computer graphics

and interactive techniques (New York, NY,

USA), ACM Press/Addison-Wesley Publishing

Co., 1997, pp. 361–368.

[DC05] Feng Dong and Gordon J. Clapworthy,

Volumetric texture synthesis for nonphotorealistic

volume rendering of medical data, The Visual

Computer 21 (2005), 463–473.

[DCH88] Robert A. Drebin, Loren Carpenter, and

Pat Hanrahan, Volume rendering, SIGGRAPH

‟88: Proceedings of the 15th annual conference

on Computer graphics and interactive techniques

(New York, NY, USA), ACM, 1988, pp. 65–74.

[GD95] D. Ghazanfarpour and J. M. Dischler,

Spectral analysis for automatic 3-d texture

generation, Computers & Graphics 19 (1995), no.

3, 413 – 422.

 [Har01] P Harrison, A non-hierarchical procedure

for re-synthesis of complex textures, WSCG „

2001, 9th International Conference on Computer

Graphics, Visualization and Computer Vision,

PLZEN, CZECH REPUBLIC, FEB 05-09, 2001,

pp. 190–197 (English).

[HB95] David J. Heeger and James R. Bergen,

Pyramid-based texture analysis/synthesis,

SIGGRAPH ‟95: Proceedings of the 22nd annual

conference on Computer graphics and interactive

techniques (New York, NY, USA), ACM, 1995,

pp. 229–238.

[HKRs+06a] Markus Hadwiger, Joe M. Kniss,

Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel, Real-time volume graphics, pp. 81–

102, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[HKRs+06b] Markus Hadwiger, Joe M. Kniss,

Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel, Real-time volume graphics,pp. 163–

185, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[HKRs+06c] Markus Hadwiger, Joe M. Kniss,

Christof Rezk-salama, Daniel Weiskopf, and

Klaus Engel, Real-time volume graphics,pp. 114–

116, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[JDR04] Robert Jagnow, Julie Dorsey, and Holly

Rushmeier, Stereological techniques for solid

textures, ACM Trans. Graph. 23 (2004), no. 3,

329–335.

 [KEBK05] Vivek Kwatra, Irfan Essa, Aaron Bobick,

and Nipun Kwatra, Texture optimization for

example-based synthesis, SIGGRAPH ‟05: ACM

SIGGRAPH 2005 Papers (New York, NY, USA),

ACM, 2005, pp. 795–802.

[KFCO+07] Johannes Kopf, Chi-Wing Fu, Daniel

Cohen-Or, Oliver Deussen, Dani Lischinski, and

Tien-Tsin Wong, Solid texture synthesis from 2d

exemplars, ACM Transactions on Graphics

(Proceedings of SIGGRAPH 2007) 26 (2007), no.

3, 2:1–2:9.

[LEQ+07] Aidong Lu, David S. Ebert, Wei Qiao,

Martin Kraus, and Benjamin Mora, Volume

illustration using wang cubes, ACM Trans.

Graph. 26 (2007).

[MA10] David M. Mount and Sunil Arya, Ann: A

library for approximate nearest neighbor

searching., http://www.cs.umd.edu/ mount/ANN/,

2010.

[MW09] Felix Manke and Burkhard C.Wuensche,

Texture-enhanced direct volume rendering,

Proceedings of the 4th International Conference

on Computer Graphics Theory and Applications

(GRAPP 2009) (Lisbon, Portugal), 2009, pp.

185–190.

[Per01] Ken Perlin, Noise hardware, In Real-Time

Shading SIGGRAPH Course Notes (2001), Olano

M., (Ed.)., 2001.

[RV06] Daniel Ruijters and Anna Vilanova,

Optimizing GPU Volume Rendering, JOURNAL

OF WSCG, 14th International Conference in

Central Europe on Computer Graphics,

Visualization and Computer Vision, Plzen Bory,

CZECH REPUBLIC, JAN 30-FEB 03, 2006, pp.

9–16 (English).

[SC07] Sakurambo and John Cayley, 3d coordinate

system, Image on the Internet, 2007.

[Sev04] El Sevier, Introduction to ct physics,

http://www.angelfire.com/nd/hussainpassu/Physic

s_of_Computed_Tomography.pdf, 2004.

[Wei02] Li-Yi Wei, Texture synthesis by fixed

neighborhood searching, Ph.D. thesis, Stanford,

CA, USA, 2002, Adviser- Levoy, Marc.

[WL00] Li-Yi Wei and Marc Levoy, Fast texture

synthesis using tree-structured vector

quantization, SIGGRAPH ‟00: Proceedings of the

27th annual conference on Computer graphics

and interactive techniques (New York, NY,

USA), ACM Press/Addison-Wesley Publishing

Co., 2000, pp. 479–488.

[WSI07] Yonatan Wexler, Eli Shechtman, and

Michal Irani, Space-time completion of video,

IEEE Trans. Pattern Anal. Mach. Intell. 29

(2007), no. 3, 463–476.

[WWH+10] Yajun Wang, Jiaping Wang, Nicolas

Holzschuch, Kartic Subr, Jun-Hai Yong, and

Baining Guo, Real-time rendering of

heterogeneous translucent objects with arbitrary

shapes, Computer Graphics Forum 29 (2010),

497–506.

http://www.angelfire.com/nd/hussainpassu/Physics_of_Computed_Tomography.pdf
http://www.angelfire.com/nd/hussainpassu/Physics_of_Computed_Tomography.pdf

