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ABSTRACT 
We present a novel approach to improving volume rendering by using synthesized textures in combination with 

a custom transfer function.  

First, we use existing knowledge to synthesize anisotropic solid textures to fit our volumetric data. As input to 

the synthesis method, we acquire high quality images using a 12.1 megapixel camera. 

Next, we extend the volume rendering pipeline by creating a transfer function which yields not only color and 

opacity from the input intensity, but also texture coordinates for our synthesized 3D texture. Thus, we add 

texture to the volume rendered images. This method is applied to a high quality visualization of a pig carcass, 

where samples of meat, bone, and fat have been used to produce the anisotropic 3D textures. 

Keywords 
Volumetric Rendering, Texture Synthesis, Transfer function. 

1. INTRODUCTION 
The use of volumetric data is becoming increasingly 

common within research fields such as medical 

visualization, food production and graphics. This 

data is also ever increasing in size as the scanners 

providing the data, e.g. CT, MRI, and ultrasound 

scanners, are improving and thus able to provide 

higher resolutions. Increased precision and more 

detail is a natural evolution as having too much 

information, is somewhat of a luxury problem. 

When concerned with rendering volumetric data in 

real time, two issues persist. Firstly, the features that 

we would like to visualize might be on a finer scale 

than the voxels, despite the ever increasing amount of 

volume data.  In our case, we visualize pig meat, and 

the variation in the texture of pig meat is on a finer 

scale than the resolution of our CT scan. Moreover, 

the voxels in our CT scanned data are stretched ten 

times along one axis. This problem is compounded 

by a second issue which is the fact that the CT 

intensities represent material density, which is not 

directly related to the appearance of the underlying 

tissue. 

We present a novel approach which aims to alleviate 

both issues. With prior knowledge about the type of 

volumetric data we wish to visualize, we synthesize 

an anisotropic 3D texture which is applied to the 

volume data via a customized transfer function. 

Using this transfer function, we map the CT 

intensities to a high resolution solid pig meat texture 

which gives a qualitatively far better representation 

of the meat than any single color. Moreover, the solid 

texture texels are not stretched. 

Solid textures are an ideal fit when rendering 

volumetric data. In almost all cases, there is an 

interest in rendering what is beneath the surface or 

subdividing the data to expose some deeper layer. 

Since a solid texture shares the same number of 

dimensions as common volume data, its application 

is relatively straightforward. 

2. Related Work 
The focus of this paper can be divided into solid 

texture synthesis, and the application thereof in 

volumetric rendering. 

Solid Texture Synthesis 
Considerable work has been done within the field of 

texture synthesis, from parametric methods [HB95] 

to non-parametric methods [DB97, Har01], as well as 

alternative approaches [WL00]. Most texture 

synthesis algorithms use a sample texture as input, 

referred to from here on as exemplar. This exemplar 

forms the basis for either a parametric model, which 

synthesizes a new texture based on modeled 
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parameters, or for a non-parametric algorithm, which 

reuses elements from the exemplar and recombines 

these to create a new, yet similar, texture. 

Solid texture synthesis has been pioneered and 

expanded upon within the past two decades. Several 

methods, both parametric [GD95] and non-

parametric [Wei02], as well as alternate approaches 

[JDR04], have been presented. 

A recent texture synthesis method, which we use to 

create our anisotropic textures, is called texture 

optimization [KEBK05, KFCO+07]. This method 

iteratively improves the texture as a whole, making 

each modification smaller and more refined. 

Volumetric Transfer Function 
Volume rendering [DCH88] has come a long way. 

Most applications today make use of graphics 

hardware to improve performance [CN94]. The field 

has seen a dramatic increase of research into all kinds 

of visualization techniques involving volumetric 

data. Most volumetric data originates from either 

computed tomography or magnetic resonance scans, 

which do not yield a direct mapping to appearance 

attributes (i.e. color and texture of the scanned 

tissue). An obvious field of research is therefore to 

provide proper color and texture to this otherwise 

appearance deficient data. The visible human project 

is one such example, where a male and female body 

has been scanned, and subsequently cut and 

photographed to obtain the correlation between 

density and appearance. One method with which to 

color the data, is the use of a transfer function 

[HKRs+06a]. 

Many methods for creating transfer functions exist. 

From a simple pre-defined function capable of 

transforming between two number domains, to a user 

defined transfer function allowing for iterative 

refinement through user input [CS07]. In most cases, 

user input is desirable since the transfer function is 

often used as a tool to highlight or hide specific 

features in the volume data. 

Other approaches include Dong and Clapworthy 

[DC05], who use 2D input exemplars to apply and 

synthesize texture to a volumetric volume 

simultaneously. By analyzing the orientation of each 

voxel in the volume data a patch based synthesis 

strategy is applied to apply and expand the 2D 

exemplar to the volume. 

Lu et al. [LEQ+07] expand upon an existing 2D 

synthesis algorithm to create a flexible system for 

volume illustration. By extending the concept of 

Wang Cubes into the third dimension Lu et al. create 

a tileable solid texture set.  

Manke and Wünsche [MW09] provide a formal 

framework for applying solid textures to a volume, 

similar to the work in this paper. They also present 

methods for dealing with discontinuous mapping. In 

contrast to this paper, however they do not touch 

upon the scaling or periodicity issues of applying a 

repeating solid textures to a volume. 

In this paper, we use a simple, piecewise constant 

transfer function which maps voxel intensities to 

entire texture volumes, similar to Manke and 

Wünsche [MW09]. Subsequently, the color values at 

the given position in the volume are obtained by 

lookup in these texture volumes. The voxel density is 

used as an indicator for opacity. The textures are 

applied in a multi-scale fashion to minimize the 

periodicity, which is further described in Section 6. 

3. Overview 
It has been our overall goal is to improve the 

visualization of CT scanned data. By applying a solid 

texture to the data via a transfer function, we are able 

to increase the visual detail at a minor cost to the 

computations required. 

We employ the texture optimization method 

presented by Kopf et al. [KFCO+07], to synthesize 

our anisotropic textures. There is a large overlap with 

our description and [KFCO+07]. This is partly to 

highlight particular details of our implementation and 

partly to make the present paper more self-contained. 

Unfortunately, the aforementioned texture synthesis 

method does a poor job of synthesizing textures with 

only low frequency features. This leads to some 

muscle textures being comparable to base noise 

textures with similar colors.  

Due to computational limitations, synthesizing solids 

larger than 128x128x128 is not feasible. This 

presents a number of scale and periodicity issues 

which we explore in sections 6 and 7. In short, we 

apply the synthesized texture in multiple scales to 

allow for fine and rough effects. We still make use of 

the CT data to add additional rough detail. 

The results of these iterative improvements are 

compared and discussed, also in section 7. 

4. Solid Texture Synthesis 
As previously explained, texture optimization is an 

iterative method where the difference between the 

input exemplar and the synthesized solid is 

minimized. The difference is measured by a global 

texture energy function which compares fixed sized 

8x8 2D neighborhoods. For now, let us assume that 

each voxel/texel defines its own neighborhood. We 

define a simplified global texture energy function, 

similar to the one by Kopf et al. [KFCO+07]. 

                         
 

 

   

  

Equation 1: Global Energy Function. 



The neighborhoods in the synthesized solid and input 

exemplar(s), are denoted by    and    respectively. 

The total number of number of neighborhoods from 

the synthesized solid (  ) is denoted  . The  th 

vectorized neighborhood in the solid is denoted     , 

and its closest match (in    norm) in the input 

exemplar(s), is denoted by        . The exponent 

      makes the function more robust against 

outliers [KFCO+07, KEBK05]. 

Initially, the synthesized volume is comprised of 

randomly selected texels from the input exemplar. 

The volume is then iteratively improved to resemble 

the input exemplar(s). The process is comparable to 

an expectation maximization algorithm. We first find 

the “best looking” parameters, then we optimize 

based on those findings, and repeat the process. 

 

Figure 1: Exemplars on the three planes 

orthogonal to the main axes. 

As mentioned previously, comparing the synthesized 

texture to the input exemplar(s) is done by comparing 

fixed sized 8x8 neighborhoods. These neighborhoods 

are extracted from both the synthesized volume and 

the input exemplar(s). However, there is not – as 

previously mentioned - one neighborhood assigned to 

each voxel. Rather, each voxel is indirectly related to 

the neighborhoods that includes it. 

 

Figure 2: Density of neighborhoods on both 

exemplar and synthesis textures. 

On the input exemplars, these neighborhoods lie on a 

densely populated grid, since we want to use all the 

available information provided to us, about the 

texture to be synthesized. In the synthesized volume 

the neighborhoods lie on a sparse grid (spaced 1 

voxel apart like Kopf et al. [KFCO+07]), and only on 

planes orthogonal to the three main axes of our 

coordinate system, as shown in Figure 1. This serves 

to reduce computation time and avoid re-sampling 

issues. 

Figure 2 visualizes the sparse grid upon which the 

synthesized neighborhoods lie. A given voxel – 

highlighted in blue - is a member of 16 on any given 

plane, due to the sythesized solids toroidal boundary 

conditions. 

Once the all the neighborhoods have been extracted, 

the “best looking” parameters are then found by 

locating the least different neighborhood in the input 

exemplar(s), for each neighborhood in the 

synthesized volume. Once found, each voxel is 

assigned a new value based on texels in the 

corresponding best matches of the neighborhoods 

overlapping that voxel. Essentially averaging all the 

contributions to make a new color: 

   
              

   

  

Equation 2: Voxel color calculation. 

The new color assigned to the voxel in the 

synthesized solid, denoted   , is an average of 

several existing color values. The above equation 

states that for each neighborhood    the voxel is a 

member of, we find the matching texel  , in the best 

matching neighborhood        . This sum is finally 

divided by    , which denotes the number of 

neighborhoods the voxel    is a part of. 

 

Figure 3: Neighborhoods on the three planes 

orthogonal to the main axes matched to input 

exemplar neighborhoods. 

Figure 3 visualizes equation 2 in practice. In our 

sparsely populated grid on the synthesized solid, a 

single voxel is member of 16 neighborhoods on a 

single plane orthogonal to a main axis. Since we have 

three such planes, visualized as blue, yellow, and 

green in figure 3, the voxel is a member of a total of 

48 neighborhoods. Each of these neighborhoods has 

a corresponding match in an exemplar. The texel 

overlapping the same position in each of these 



neighborhoods contributes to the sum, which is 

eventually divided by the total number of 

contributions (in this case 48), yielding the new 

color.  

The optimization algorithm is actually performed on 

multiple levels of differing quality. The synthesized 

solid initially consists of 32x32x32 voxels, and input 

exemplar(s) are scaled to 32x32 respectively. Once 

the synthesis process reaches certain conditions, 

outlined in section 4.5, the volume is scaled up to 

64x64x64 using trilinear interpolation. Due to 

computational restrictions of performing a nearest 

neighbor search in a high dimensional space, the 

synthesis is only performed up to a resolution of 

128x128x128. 

Approximate Nearest Neighbor 
In a standard-RGB texture, an 8x8 neighborhood 

consists of 192 values. Finding the nearest neighbor 

in a 192 dimensional space is a computationally 

expensive operation. 

We apply the same optimizations as Kopf et al. 

[KFCO+07] to reduce the computation complexity. A 

principal component analysis is performed on the 

neighborhood vectors from the exemplar(s). By only 

preserving the coefficients required to maintain 95% 

of the variance, we can typically reduce the number 

of dimensions by half, or more. 

We also employ the ANN: Approximate nearest 

neighbor library [MA10]. The library accepts a value 

 , and returns an approximate nearest neighbor 

guaranteed to be at most     away from the true 

nearest neighbor. We employ     as dictated by 

Kopf et al. [KFCO+07]. 

Weighting Scheme 
As previously mentioned in section 4, using an 

exponent of 0.8 in equation 1, causes it to be more 

robust against outliers. However, minimizing the    

norm is more cumbersome than minimizing the    

norm. So instead we introduce a weight into the 

equation and rewrite the terms of the energy function 

(1) to the following (similar to Kopf et al. 

[KFCO+07]): 

              
 
 

               
   

              
 

                       
 
 

Equation 3: Energy function term re-write. 

where                       
   

. This leads to 

the following quadratic formula which we seek to 

minimize: 

 

                                
 

         

   

  

Equation 4: Improved energy function. 

The weight parameter         makes sure that the 

exemplar neighborhood closest to a given 

synthesized neighborhood, carries the most weight. 

Instead of a straight average as applied in equation 2, 

we are now calculating a weighted average which 

leads to the following formula when calculating a 

new voxel value: 

   
         

             

              

  

Equation 5: Weighted voxel color calculation. 

Instead of dividing the sum by the total number of 

contributors, we now divide by the total amount of 

weight distributed among the contributions. 

Meanshift 
Although adjusting each contributing texel with a 

weight parameter yields better results and speeds up 

convergence, there are still numerous textures which 

fail to produces acceptable results. One persisting 

issue is that outliers still contribute to the final result, 

even if their contribution is minimal. 

In order to minimize contribution from outliers, Kopf 

et al. [KFCO+07] employ a clustering approach, 

proposed by Wexler et al. [WSI07]. In short, every 

contributing texel is considered to be a cluster. These 

clusters are then merged depending whether their 

center is within a distance of   to one another. If any 

new clusters emerge, the process of searching and 

merging is repeated, until no further clusters form. 

Only texels from the dominant cluster end up 

contributing to the new voxel value. 

The threshold   is decreased with each iteration over 

the course of a single resolution level convergence. 

Once the synthesized texture converges on a single 

level, the thresholding value   is reset. We found that 

setting     ,       , and        worked well 

in many cases, on the lowest, medium, and highest 

resolution level, respectively. 

Histogram Matching 
The previously mentioned modifications to the 

original synthesis method, speeds up convergence 

and minimizes the impact of outliers. However, the 

algorithm will occasionally converge at certain 

minima, which fail to make full use of the 

exemplar(s) details. 

Kopf et al. [KFCO+07] address this issue by utilizing 

histogram matching. The weight each texel carries is 

further adjusted, based upon whether its contribution 

will increase, or decrease, the similarity between the 

histograms of the input exemplar, and the 



synthesized solid. Practically, they achieve this by 

keeping track of a 16-bin histogram for each of the 

input exemplars‟ channels. Usually, this is just the 

red, green, and blue channel. Kopf et al. also note the 

importance of keeping this histogram up to date 

during each “maximization” phase. Otherwise, the 

method will just overshoot the intended histogram 

and overcompensate in the following iteration. 

When synthesizing anisotropic textures we maintain 

one histogram per input exemplar. We let each 

contributing texel pull in the direction of its 

exemplars histogram, which seems to work well. Just 

like Kopf et al. we also traverse the voxels in a 

random order, to avoid any directional bias. 

Histogram matching is an integral part of creating the 

best results possible via texture optimization. It 

makes the algorithm take global statistics into 

consideration while still allowing for the use of a 

small neighborhood window. Histogram matching 

also speeds up convergence significantly. 

Synthesis Convergence Conditions 
We found that a fixed number of iterations yielded 

the best result with most textures (J. Kopf, pers. 

comm.). Iterating 100 times on the lowest resolution, 

20 on the next level, and 10 on the highest level, 

worked well with most textures. 

5. Exemplar Acquisition 
As with every other texture synthesis method, we 

require exemplars of the texture we intend to 

synthesize. Our exemplars were obtained using a 

12.1 megapixel camera, Canon IXUS 120IS, in a 

well lit setting. Originally, we intended to obtain 

samples using a multispectral color and texture 

measurement vision system. This system measures 

up to 20 different bands across the visible and non-

visible spectrum. These precise measurements are 

then combined to a final standard-RGB image. 

However, most household cameras actually yield 

more vivid and realistic colors as each sensor 

integrates a wider range of the spectrum than the 

more precise instrument. 

6. Rendering 
To visualize the volumetric data, a simple ray casting 

technique [HKRs+06b] is applied using the GPU. To 

obtain the start and end point for each ray, two 

rendering passes are performed of a cube showing 

the front- and backface respectively. The cube acts as 

our rendering proxy and yields the start and end 

position for each ray, which is recorded into a buffer 

using the fragment shader. 

An additional rendering pass is then performed where 

the fragment shader traces a ray through the space 

enclosed by the cube. The ray is traced with 0.001 

increments in relation to the unit cube around the 

volume, and accumulates more color and opacity as it 

traverses the volume. The “ray-color” starts off black 

and completely transparent. For each step through the 

volume, the current density is classified as air, skin, 

fat, meat, or bone, according to the Hounsfield scale 

[Sev04]. Its contribution to the overall “ray-color” as 

well as “remaining transparency” is calculated by the 

following formulas: 

                  

              

Equation 6: Color and transparency contribution 

per ray-step. 

The contribution added to the existing color and 

transparency value of the ray is denoted as     . The 

amount of contributing light via simple lambertian 

shading [HKRs+06c], is denoted  . The contributing 

color and transparency from the classified density is 

denoted      and    respectively. When “ray-color” 

is completely opaque, the ray traversal is stopped. 

 

Figure 4: Three synthesized solids and their two 

input exemplars (pig muscle tissue). The left and 

middle synthesis’ yield an unsatisfactory result. 

Setting      in Equation 6 to the color from the 

appropriately scaled solid texture produces a result 

with significant periodicity at high magnification and 

almost uniform color at low magnification (because 

of mipmapping). This can be seen in Figure 5, in the 

top and bottom left. To ameliorate these issues, we 

combine the texture at three levels of scaling, and 

     is computed as illustrated in the next equation. 



 

Figure 5: Three differently scaled muscle textures combined to create the final result. The top and middle 

segment show zoomed in areas to show finer detail. 

 

 

Figure 6: On the top, volumetric data from the pig carcass, visualized without enhanced graphics. The 

colors for the meat, bone, and fat tissue are the average color values of the textures applied on the right. 

On the bottom, volumetric data from the pig carcass, visualized with enhanced graphics. The highlighted 

sections in yellow indicate the zoomed section displayed on the right.



      
    

          
         

   

        
 

                         

                 

Equation 7: Density case color contribution. 

The color contribution consists of three differently 

scaled textures     
    and an associated weight factor 

    . For each tissue, the scales differ approximately 

a factor of 10, and the weight factor is always highest 

for the macro texture (approximately 3 to 1). Density 

is contributed to the final color value        via     . 

The value     represents a scaled measure of the 

density at that point in the volumetric data, and 

          denotes the density threshold of the 

contributing tissue. The result of combining the three 

synthesized muscle textures, along with the density 

modifier, is visualized in Figure 5. 

An exception to the calculation outlined in Equation 

7 is the skin color contribution which yields a 

constant average color of sampled pig skin, 

permeated by simplex noise [Per01] to give some 

variation to the surface. 

The transparency value for either fat, muscle or bone 

is calculated via the following formula: 

                      

Skin has a constant translucency of 0.75, and air is 

completely transparent. 

7. Results 
We implemented the method described in this paper 

entirely in C++. The time required to generate a 

    solid depends primarily on the size and richness 

of the input exemplars. On an Alienware m17x 

model (using only a single core) the synthesis of our 

three tissue types would usually converge after 

approximately 2-3 hours. It was our experience that 

the algorithm generated the best textures when only 

forcing two of the three dimensions to conform to 

input exemplars, regardless of whether isotropic, or 

anisotropic synthesis. 

As previously mentioned in section 3, the synthesis 

algorithm has trouble synthesizing 3D textures based 

on input exemplars with primarily low frequency 

features. The two initial attempts in figure 4 show 

how the final synthesized solid ends up looking 

almost nothing like the original two textures used as 

input. The third synthesized solid is much more 

promising. 

A question of scale arises when choosing how much 

surface a single exemplar should cover. To ensure we 

acquired as homogenous a sample as possible, and 

preserve detail, we chose to use exemplars covering a 

small area of approximately 2x2 cm. 

As previously mentioned in section 6, the final color 

value of a voxel is modified by a simple mapping of 

the current density. The density modifier allows for a 

number of low frequency details to show, as is 

visualized in Figure 7. 

 

Figure 7: Two hams, with and without density 

value modification. The highlighted sections in 

yellow indicate the zoomed section displayed on 

the bottom. 

The final result of the visualized volume data with all 

the aforementioned techniques applied is shown in 

Figure 6. 

 

Figure 8: The volume data rotation pattern of the 

preliminary benchmark. Unenhanced pig 

visualized. 

We perform a preliminary benchmark of the applied 

synthetic textures by rotating the volume one 

complete turn, around the y-axis, as seen in Figure 8.  

 Std. Graphics Enh. Graphics 

Min. Fps 53 47 

Max. Fps 118 102 

Avrg. Fps 76.817 61.117 

Table 1: Preliminary performance measurements. 

The application of the synthesized textures only 

requires three additional texture lookups per 



visualized voxel. Since texture lookups are 

implemented on the hardware level, it comes as no 

surprise that the performance loss is minimal, as seen 

in Table 1. However, creating the synthesized 

textures is another matter. Due to the complexity of a 

nearest neighbor search in a high dimensional space, 

performing the synthesis in real-time is an 

impossibility. 

8. Conclusions and Future Work 
We have utilized an existing texture synthesis 

approach to produce three anisotropic textures, which 

were then applied to volumetric data via a custom 

transfer function, improving upon the original 

colorless data. 

The technique can potentially be applied to any type 

of volumetric data and is not necessarily constricted 

to organic tissue.  

Although the result has improved significantly, there 

is still room for improvement. 

 

Figure 9: A close up of the visualized volumetric 

data showing computed tomography artifacts. 

Our light model is simplistic. Better modeling of how 

light and meat interact would be an obvious next step 

since, recently, techniques for real-time interactive 

computation of translucent surfaces have started to 

appear, e.g. [WWH+10]. 

As mentioned in the previous section, we modify the 

final color slightly via the density of the volumetric 

data. While this adds significant detail to the final 

visualization, it also introduces a number of artifacts 

introduced by the scanning method. Figure 9 shows 

how the data acquisition rays from computed 

tomography leaves visible artifacts in the volume 

data. 

Due to time required to perform a complete solid 

texture synthesis it could be advantageous to create a 

larger pre-computed library of multiple tissue types 

(in addition to the three described in this paper). 

Theoretically, it would also be possible to synthesize 

in-between textures by using an input exemplar from 

each tissue type, to smooth the transition between 

them. A few practical experiments are required to see 

how convincing the resulting solid textures would be. 

It would also be interesting to implement and 

compare the technique demonstrated by Lu et al. 

[LEQ+07]. Using their extension to the wang cube 

model is also a way of avoiding periodicity in the 

applied texture. 
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